CIFAR10-img-classification-tensorflow
CIFAR10-img-classification-tensorflow copied to clipboard
Mismatch between ipynb and py version
The py file does not run without errors.
First error:
2018-12-26 13:43:14.981240: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
2018-12-26 13:43:15.288316: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-12-26 13:43:15.288357: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
2018-12-26 13:43:15.288371: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
2018-12-26 13:43:15.288589: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 7096 MB memory) -> physical GPU (device: 0, name: Tesla M60, pci bus id: 0000:00:1e.0, compute capability: 5.2)
Traceback (most recent call last):
File "CIFAR10_image_classification.py", line 295, in <module>
main()
File "CIFAR10_image_classification.py", line 284, in main
for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
NameError: name 'helper' is not defined
After this two missing functions are inserted at the top:
def load_preprocess_training_batch(batch_id, batch_size):
"""
Load the Preprocessed Training data and return them in batches of <batch_size> or less
""""
filename = 'preprocess_batch_' + str(batch_id) + '.p'
features, labels = pickle.load(open(filename, mode='rb'))
# Return the training data in batches of size <batch_size> or less
return batch_features_labels(features, labels, batch_size)
def batch_features_labels(features, labels, batch_size):
"""
Split features and labels into batches
"""
for start in range(0, len(features), batch_size):
end = min(start + batch_size, len(features))
yield features[start:end], labels[start:end]
... the script stops at...
Traceback (most recent call last):
File "CIFAR10_image_classification.py", line 311, in <module>
main()
File "CIFAR10_image_classification.py", line 301, in main
train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
File "CIFAR10_image_classification.py", line 215, in train_neural_network
x: feature_batch,
NameError: name 'x' is not defined
I am going to debug further and submit a patch (hopefully). :)
I believe I have removed 'helper' from the notebook.
@ChristianKniep did you ever fix this issue?
@ChristianKniep did you ever fix this issue?
insert def train_neural_network and def print_stats in def main
haw did you fix it?
pass-test on python 2.7.
import tarfile
import pickle
import random
import numpy as np
import tensorflow as tf
#from urllib2.request import urlretrieve
from os.path import isfile, isdir
#from tqdm import tqdm
cifar10_dataset_folder_path = 'cifar-10-batches-py'
# Remove previous weights, bias, inputs, etc..
tf.reset_default_graph()
# Inputs
x = tf.placeholder(tf.float32, shape=(None, 32, 32, 3), name='input_x')
y = tf.placeholder(tf.float32, shape=(None, 10), name='output_y')
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
#class DownloadProgress(tqdm):
# last_block = 0
#
# def hook(self, block_num=1, block_size=1, total_size=None):
# self.total = total_size
# self.update((block_num - self.last_block) * block_size)
# self.last_block = block_num
"""
check if the data (zip) file is already downloaded
if not, download it from "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" and save as cifar-10-python.tar.gz
"""
def load_label_names():
return ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
def load_cfar10_batch(cifar10_dataset_folder_path, batch_id):
with open(cifar10_dataset_folder_path + '/data_batch_' + str(batch_id), mode='rb') as file:
# note the encoding type is 'latin1'
batch = pickle.load(file)
#batch = pickle.load(file, encoding='latin1')
features = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0, 2, 3, 1)
labels = batch['labels']
return features, labels
def display_stats(cifar10_dataset_folder_path, batch_id, sample_id):
features, labels = load_cfar10_batch(cifar10_dataset_folder_path, batch_id)
if not (0 <= sample_id < len(features)):
print('{} samples in batch {}. {} is out of range.'.format(len(features), batch_id, sample_id))
return None
print('\nStats of batch #{}:'.format(batch_id))
print('# of Samples: {}\n'.format(len(features)))
label_names = load_label_names()
label_counts = dict(zip(*np.unique(labels, return_counts=True)))
for key, value in label_counts.items():
print('Label Counts of [{}]({}) : {}'.format(key, label_names[key].upper(), value))
sample_image = features[sample_id]
sample_label = labels[sample_id]
print('\nExample of Image {}:'.format(sample_id))
print('Image - Min Value: {} Max Value: {}'.format(sample_image.min(), sample_image.max()))
print('Image - Shape: {}'.format(sample_image.shape))
print('Label - Label Id: {} Name: {}'.format(sample_label, label_names[sample_label]))
def normalize(x):
"""
argument
- x: input image data in numpy array [32, 32, 3]
return
- normalized x
"""
min_val = np.min(x)
max_val = np.max(x)
x = (x-min_val) / (max_val-min_val)
return x
def one_hot_encode(x):
"""
argument
- x: a list of labels
return
- one hot encoding matrix (number of labels, number of class)
"""
encoded = np.zeros((len(x), 10))
for idx, val in enumerate(x):
encoded[idx][val] = 1
return encoded
def _preprocess_and_save(normalize, one_hot_encode, features, labels, filename):
features = normalize(features)
labels = one_hot_encode(labels)
pickle.dump((features, labels), open(filename, 'wb'))
def preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode):
n_batches = 5
valid_features = []
valid_labels = []
for batch_i in range(1, n_batches + 1):
features, labels = load_cfar10_batch(cifar10_dataset_folder_path, batch_i)
# find index to be the point as validation data in the whole dataset of the batch (10%)
index_of_validation = int(len(features) * 0.1)
# preprocess the 90% of the whole dataset of the batch
# - normalize the features
# - one_hot_encode the lables
# - save in a new file named, "preprocess_batch_" + batch_number
# - each file for each batch
_preprocess_and_save(normalize, one_hot_encode,
features[:-index_of_validation], labels[:-index_of_validation],
'preprocess_batch_' + str(batch_i) + '.p')
# unlike the training dataset, validation dataset will be added through all batch dataset
# - take 10% of the whold dataset of the batch
# - add them into a list of
# - valid_features
# - valid_labels
valid_features.extend(features[-index_of_validation:])
valid_labels.extend(labels[-index_of_validation:])
# preprocess the all stacked validation dataset
_preprocess_and_save(normalize, one_hot_encode,
np.array(valid_features), np.array(valid_labels),
'preprocess_validation.p')
# load the test dataset
with open(cifar10_dataset_folder_path + '/test_batch', mode='rb') as file:
#batch = pickle.load(file, encoding='latin1')
batch = pickle.load(file)
# preprocess the testing data
test_features = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0, 2, 3, 1)
test_labels = batch['labels']
# Preprocess and Save all testing data
_preprocess_and_save(normalize, one_hot_encode,
np.array(test_features), np.array(test_labels),
'preprocess_training.p')
def conv_net(x, keep_prob):
conv1_filter = tf.Variable(tf.truncated_normal(shape=[3, 3, 3, 64], mean=0, stddev=0.08))
conv2_filter = tf.Variable(tf.truncated_normal(shape=[3, 3, 64, 128], mean=0, stddev=0.08))
conv3_filter = tf.Variable(tf.truncated_normal(shape=[5, 5, 128, 256], mean=0, stddev=0.08))
conv4_filter = tf.Variable(tf.truncated_normal(shape=[5, 5, 256, 512], mean=0, stddev=0.08))
# 1, 2
conv1 = tf.nn.conv2d(x, conv1_filter, strides=[1,1,1,1], padding='SAME')
conv1 = tf.nn.relu(conv1)
conv1_pool = tf.nn.max_pool(conv1, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
conv1_bn = tf.layers.batch_normalization(conv1_pool)
# 3, 4
conv2 = tf.nn.conv2d(conv1_bn, conv2_filter, strides=[1,1,1,1], padding='SAME')
conv2 = tf.nn.relu(conv2)
conv2_pool = tf.nn.max_pool(conv2, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
conv2_bn = tf.layers.batch_normalization(conv2_pool)
# 5, 6
conv3 = tf.nn.conv2d(conv2_bn, conv3_filter, strides=[1,1,1,1], padding='SAME')
conv3 = tf.nn.relu(conv3)
conv3_pool = tf.nn.max_pool(conv3, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
conv3_bn = tf.layers.batch_normalization(conv3_pool)
# 7, 8
conv4 = tf.nn.conv2d(conv3_bn, conv4_filter, strides=[1,1,1,1], padding='SAME')
conv4 = tf.nn.relu(conv4)
conv4_pool = tf.nn.max_pool(conv4, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
conv4_bn = tf.layers.batch_normalization(conv4_pool)
# 9
flat = tf.contrib.layers.flatten(conv4_bn)
# 10
full1 = tf.contrib.layers.fully_connected(inputs=flat, num_outputs=128, activation_fn=tf.nn.relu)
full1 = tf.nn.dropout(full1, keep_prob)
full1 = tf.layers.batch_normalization(full1)
# 11
full2 = tf.contrib.layers.fully_connected(inputs=full1, num_outputs=256, activation_fn=tf.nn.relu)
full2 = tf.nn.dropout(full2, keep_prob)
full2 = tf.layers.batch_normalization(full2)
# 12
full3 = tf.contrib.layers.fully_connected(inputs=full2, num_outputs=512, activation_fn=tf.nn.relu)
full3 = tf.nn.dropout(full3, keep_prob)
full3 = tf.layers.batch_normalization(full3)
# 13
full4 = tf.contrib.layers.fully_connected(inputs=full3, num_outputs=1024, activation_fn=tf.nn.relu)
full4 = tf.nn.dropout(full4, keep_prob)
full4 = tf.layers.batch_normalization(full4)
# 14
out = tf.contrib.layers.fully_connected(inputs=full3, num_outputs=10, activation_fn=None)
return out
def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch):
session.run(optimizer,
feed_dict={
x: feature_batch,
y: label_batch,
keep_prob: keep_probability
})
def print_stats(sess, feature_batch, label_batch, cost, accuracy, valid_features, valid_labels):
loss = sess.run(cost,
feed_dict={
x: feature_batch,
y: label_batch,
keep_prob: 1.
})
valid_acc = sess.run(accuracy,
feed_dict={
x: valid_features,
y: valid_labels,
keep_prob: 1.
})
print('Loss: {:>10.4f} Validation Accuracy: {:.6f}'.format(loss, valid_acc))
def batch_features_labels(features, labels, batch_size):
"""
Split features and labels into batches
"""
for start in range(0, len(features), batch_size):
end = min(start + batch_size, len(features))
yield features[start:end], labels[start:end]
def load_preprocess_training_batch(batch_id, batch_size):
"""
Load the Preprocessed Training data and return them in batches of <batch_size> or less
"""
filename = 'preprocess_batch_' + str(batch_id) + '.p'
features, labels = pickle.load(open(filename, mode='rb'))
# Return the training data in batches of size <batch_size> or less
return batch_features_labels(features, labels, batch_size)
def main():
# Download the dataset (if not exist yet)
#if not isfile('cifar-10-python.tar.gz'):
# with DownloadProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:
# urlretrieve(
# 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
# 'cifar-10-python.tar.gz',
# pbar.hook)
if not isdir(cifar10_dataset_folder_path):
with tarfile.open('cifar-10-python.tar') as tar:
tar.extractall()
tar.close()
# Explore the dataset
batch_id = 3
sample_id = 7000
display_stats(cifar10_dataset_folder_path, batch_id, sample_id)
# Preprocess all the data and save it
preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode)
# load the saved dataset
valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb'))
# Hyper parameters
epochs = 10
batch_size = 128
keep_probability = 0.7
learning_rate = 0.001
# Build model
logits = conv_net(x, keep_prob)
model = tf.identity(logits, name='logits') # Name logits Tensor, so that can be loaded from disk after training
# Loss and Optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')
# Training Phase
save_model_path = './image_classification'
print('Training...')
with tf.Session() as sess:
# Initializing the variables
sess.run(tf.global_variables_initializer())
# Training cycle
for epoch in range(epochs):
# Loop over all batches
n_batches = 5
for batch_i in range(1, n_batches + 1):
for batch_features, batch_labels in load_preprocess_training_batch(batch_i, batch_size):
train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1, batch_i))
print_stats(sess, batch_features, batch_labels, cost, accuracy, valid_features, valid_labels)
# Save Model
saver = tf.train.Saver()
save_path = saver.save(sess, save_model_path)
if __name__ == "__main__":
main()