stanford-tensorflow-tutorials
stanford-tensorflow-tutorials copied to clipboard
04_linreg_eager issue
train(huber_loss) and train(tf.losses.huber_loss) have different resluts. it seems like
def huber_loss(y, y_predicted, m=1.0):
"""Huber loss."""
t = y - y_predicted
return t ** 2 if tf.abs(t) <= m else m * (2 * tf.abs(t) - m)
should be
return 0.5*t**2 if tf.abs(t) <= m else m*(tf.abs(t)-0.5*m)