data_hacks
                                
                                 data_hacks copied to clipboard
                                
                                    data_hacks copied to clipboard
                            
                            
                            
                        Command line utilities for data analysis
data_hacks
Command line utilities for data analysis
Installing: pip install data_hacks
Installing from github pip install -e git://github.com/bitly/data_hacks.git#egg=data_hacks
Installing from source python setup.py install
data_hacks are friendly. Ask them for usage information with --help
histogram.py
A utility that parses input data points and outputs a text histogram
Example:
$ cat /tmp/data | histogram.py --percentage --max=1000 --min=0
# NumSamples = 60; Min = 0.00; Max = 1000.00
# 1 value outside of min/max
# Mean = 332.666667; Variance = 471056.055556; SD = 686.335236; Median 191.000000
# each ∎ represents a count of 1
    0.0000 -   100.0000 [    28]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ (46.67%)
  100.0000 -   200.0000 [     2]: ∎∎ (3.33%)
  200.0000 -   300.0000 [     2]: ∎∎ (3.33%)
  300.0000 -   400.0000 [     8]: ∎∎∎∎∎∎∎∎ (13.33%)
  400.0000 -   500.0000 [     8]: ∎∎∎∎∎∎∎∎ (13.33%)
  500.0000 -   600.0000 [     7]: ∎∎∎∎∎∎∎ (11.67%)
  600.0000 -   700.0000 [     3]: ∎∎∎ (5.00%)
  700.0000 -   800.0000 [     0]:  (0.00%)
  800.0000 -   900.0000 [     1]: ∎ (1.67%)
  900.0000 -  1000.0000 [     0]:  (0.00%)
With logarithmic scale
$ printf 'import random\nfor i in range(1000):\n print random.randint(0,10000)'|\
    python -|./data_hacks/histogram.py -l
# NumSamples = 1000; Min = 2.00; Max = 9993.00
# Mean = 4951.757000; Variance = 8279390.995951; SD = 2877.393090; Median 4828.000000
# each ∎ represents a count of 6
    2.0000 -    11.7664 [     3]:
   11.7664 -    31.2991 [     0]:
   31.2991 -    70.3646 [     5]:
   70.3646 -   148.4956 [    11]: ∎
  148.4956 -   304.7576 [    15]: ∎∎
  304.7576 -   617.2815 [    35]: ∎∎∎∎∎
  617.2815 -  1242.3294 [    51]: ∎∎∎∎∎∎∎∎
 1242.3294 -  2492.4252 [   128]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 2492.4252 -  4992.6168 [   269]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 4992.6168 -  9993.0000 [   483]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
ninety_five_percent.py
A utility script that takes a stream of decimal values and outputs the 95% time.
This is useful for finding the 95% response time from access logs.
Example (assuming response time is the last column in your access log):
$ awk '{print $NF}' /path/to/access.log | ninety_five_percent.py
sample.py
Filter a stream to a random sub-sample of the stream
Example:
$ cat access.log | sample.py 10% | post_process.py
run_for.py
Pass through data for a specified amount of time
Example:
$ tail -f access.log | run_for.py 10s | post_process.py
bar_chart.py
Generate an ascii bar chart for input data (this is like a visualization of uniq -c)
$ cat data | bar_chart.py
# each ∎ represents a count of 1. total 63
14:40 [    49] ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
14:41 [    14] ∎∎∎∎∎∎∎∎∎∎∎∎∎∎
bar_chart.py and histogram.py also support ingesting pre-aggregated values. Simply provide a two column input of count<whitespace>value for -a or value<whitespace>count for -A:
$ sort /path/to/data | uniq -c | bar_chart.py -a
This is very convenient if you pull data out, say Hadoop or MySQL already aggregated.