Ensemble-Pytorch
                                
                                 Ensemble-Pytorch copied to clipboard
                                
                                    Ensemble-Pytorch copied to clipboard
                            
                            
                            
                        A unified ensemble framework for PyTorch to improve the performance and robustness of your deep learning model.
.. image:: ./docs/_images/badge_small.png
|github|_ |readthedocs|_ |codecov|_ |license|_
.. |github| image:: https://github.com/TorchEnsemble-Community/Ensemble-Pytorch/workflows/torchensemble-CI/badge.svg .. _github: https://github.com/TorchEnsemble-Community/Ensemble-Pytorch/actions
.. |readthedocs| image:: https://readthedocs.org/projects/ensemble-pytorch/badge/?version=latest .. _readthedocs: https://ensemble-pytorch.readthedocs.io/en/latest/index.html
.. |codecov| image:: https://codecov.io/gh/TorchEnsemble-Community/Ensemble-Pytorch/branch/master/graph/badge.svg?token=2FXCFRIDTV .. _codecov: https://codecov.io/gh/TorchEnsemble-Community/Ensemble-Pytorch
.. |license| image:: https://img.shields.io/github/license/TorchEnsemble-Community/Ensemble-Pytorch .. _license: https://github.com/TorchEnsemble-Community/Ensemble-Pytorch/blob/master/LICENSE
Ensemble PyTorch
A unified ensemble framework for pytorch_ to easily improve the performance and robustness of your deep learning model. Ensemble-PyTorch is part of the pytorch ecosystem <https://pytorch.org/ecosystem/>__, which requires the project to be well maintained.
- Document <https://ensemble-pytorch.readthedocs.io/>__
- Experiment <https://ensemble-pytorch.readthedocs.io/en/stable/experiment.html>__
Installation
.. code:: bash
pip install torchensemble
Example
.. code:: python
from torchensemble import VotingClassifier  # voting is a classic ensemble strategy
# Load data
train_loader = DataLoader(...)
test_loader = DataLoader(...)
# Define the ensemble
ensemble = VotingClassifier(
    estimator=base_estimator,               # estimator is your pytorch model
    n_estimators=10,                        # number of base estimators
)
# Set the optimizer
ensemble.set_optimizer(
    "Adam",                                 # type of parameter optimizer
    lr=learning_rate,                       # learning rate of parameter optimizer
    weight_decay=weight_decay,              # weight decay of parameter optimizer
)
# Set the learning rate scheduler
ensemble.set_scheduler(
    "CosineAnnealingLR",                    # type of learning rate scheduler
    T_max=epochs,                           # additional arguments on the scheduler
)
# Train the ensemble
ensemble.fit(
    train_loader,
    epochs=epochs,                          # number of training epochs
)
# Evaluate the ensemble
acc = ensemble.evaluate(test_loader)         # testing accuracy
Supported Ensemble
+------------------------------+------------+---------------------------+-----------------------------+ | Ensemble Name | Type | Source Code | Problem | +==============================+============+===========================+=============================+ | Fusion | Mixed | fusion.py | Classification / Regression | +------------------------------+------------+---------------------------+-----------------------------+ | Voting [1]_ | Parallel | voting.py | Classification / Regression | +------------------------------+------------+---------------------------+-----------------------------+ | Neural Forest | Parallel | voting.py | Classification / Regression | +------------------------------+------------+---------------------------+-----------------------------+ | Bagging [2]_ | Parallel | bagging.py | Classification / Regression | +------------------------------+------------+---------------------------+-----------------------------+ | Gradient Boosting [3]_ | Sequential | gradient_boosting.py | Classification / Regression | +------------------------------+------------+---------------------------+-----------------------------+ | Snapshot Ensemble [4]_ | Sequential | snapshot_ensemble.py | Classification / Regression | +------------------------------+------------+---------------------------+-----------------------------+ | Adversarial Training [5]_ | Parallel | adversarial_training.py | Classification / Regression | +------------------------------+------------+---------------------------+-----------------------------+ | Fast Geometric Ensemble [6]_ | Sequential | fast_geometric.py | Classification / Regression | +------------------------------+------------+---------------------------+-----------------------------+ | Soft Gradient Boosting [7]_ | Parallel | soft_gradient_boosting.py | Classification / Regression | +------------------------------+------------+---------------------------+-----------------------------+
Dependencies
- scikit-learn>=0.23.0
- torch>=1.4.0
- torchvision>=0.2.2
Reference
.. [1] Zhou, Zhi-Hua. Ensemble Methods: Foundations and Algorithms. CRC press, 2012.
.. [2] Breiman, Leo. Bagging Predictors. Machine Learning (1996): 123-140.
.. [3] Friedman, Jerome H. Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics (2001): 1189-1232.
.. [4] Huang, Gao, et al. Snapshot Ensembles: Train 1, Get M For Free. ICLR, 2017.
.. [5] Lakshminarayanan, Balaji, et al. Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. NIPS, 2017.
.. [6] Garipov, Timur, et al. Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs. NeurIPS, 2018.
.. [7] Feng, Ji, et al. Soft Gradient Boosting Machine. ArXiv, 2020.
.. _pytorch: https://pytorch.org/
.. _pypi: https://pypi.org/project/torchensemble/
Thanks to all our contributors
|contributors|
.. |contributors| image:: https://contributors-img.web.app/image?repo=TorchEnsemble-Community/Ensemble-Pytorch .. _contributors: https://github.com/TorchEnsemble-Community/Ensemble-Pytorch/graphs/contributors