DMPR-PS
                                
                                 DMPR-PS copied to clipboard
                                
                                    DMPR-PS copied to clipboard
                            
                            
                            
                        DMPR-PS: A Novel Approach for Parking-Slot Detection Using Directional Marking-Point Regression
DMPR-PS
This is the implementation of DMPR-PS using PyTorch.
Requirements
- PyTorch
- CUDA (optional)
- Other requirements
 pip install -r requirements.txt
Pre-trained weights
The pre-trained weights could be used to reproduce the number in the paper.
Inference
- 
Image inference python inference.py --mode image --detector_weights $DETECTOR_WEIGHTS --inference_slot
- 
Video inference python inference.py --mode video --detector_weights $DETECTOR_WEIGHTS --video $VIDEO --inference_slotArgument DETECTOR_WEIGHTSis the trained weights of detector.
 ArgumentVIDEOis path to the video.
 Viewconfig.pyfor more argument details.
Prepare data
- 
Download ps2.0 from here, and extract. 
- 
Download the labels, and extract. 
 (In case you want to label your own data, you can usedirectional_pointbranch of my labeling tool MarkToolForParkingLotPoint.)
- 
Perform data preparation and augmentation: python prepare_dataset.py --dataset trainval --label_directory $LABEL_DIRECTORY --image_directory $IMAGE_DIRECTORY --output_directory $OUTPUT_DIRECTORY python prepare_dataset.py --dataset test --label_directory $LABEL_DIRECTORY --image_directory $IMAGE_DIRECTORY --output_directory $OUTPUT_DIRECTORYArgument LABEL_DIRECTORYis the directory containing json labels.
 ArgumentIMAGE_DIRECTORYis the directory containing jpg images.
 ArgumentOUTPUT_DIRECTORYis the directory where output images and labels are.
 Viewprepare_dataset.pyfor more argument details.
Train
python train.py --dataset_directory $TRAIN_DIRECTORY
Argument TRAIN_DIRECTORY is the train directory generated in data preparation.
View config.py for more argument details (batch size, learning rate, etc).
Evaluate
- 
Evaluate directional marking-point detection python evaluate.py --dataset_directory $TEST_DIRECTORY --detector_weights $DETECTOR_WEIGHTSArgument TEST_DIRECTORYis the test directory generated in data preparation.
 ArgumentDETECTOR_WEIGHTSis the trained weights of detector.
 Viewconfig.pyfor more argument details (batch size, learning rate, etc).
- 
Evaluate parking-slot detection python ps_evaluate.py --label_directory $LABEL_DIRECTORY --image_directory $IMAGE_DIRECTORY --detector_weights $DETECTOR_WEIGHTSArgument LABEL_DIRECTORYis the directory containing testing json labels.
 ArgumentIMAGE_DIRECTORYis the directory containing testing jpg images.
 ArgumentDETECTOR_WEIGHTSis the trained weights of detector.
 Viewconfig.pyfor more argument details.
Citing DMPR-PS
If you find DMPR-PS useful in your research, please consider citing:
@inproceedings{DMPR-PS,
Author = {Junhao Huang and Lin Zhang and Ying Shen and Huijuan Zhang and Shengjie Zhao and Yukai Yang},
Booktitle = {2019 IEEE International Conference on Multimedia and Expo (ICME)},
Title = {{DMPR-PS}: A novel approach for parking-slot detection using directional marking-point regression},
Month = {Jul.},
Year = {2019},
Pages = {212-217}
}