VAE-Pytorch
VAE-Pytorch copied to clipboard
1.Overview
This is the Pytorch implementation of variational auto-encoder, applying on MNIST dataset.
Currently, the following models are supported:
- :heavy_check_mark: VAE
- :heavy_check_mark: Conv-VAE
2.Usage
python train.py
The code is self-explanatory, you can specify some customized options in train.py.
3.Result
Here are some visualization results:
3.1 Reconstruction results
| Model | epoch 10 | epoch 20 | epoch 30 | epoch 40 | epoch 50 |
|---|---|---|---|---|---|
| VAE | ![]() |
![]() |
![]() |
| | | |
| Conv-VAE | ![]() |
![]() |
![]() |
![]() |
![]() |
3.2 Randomly generated results
| Model | epoch 10 | epoch 20 | epoch 30 | epoch 40 | epoch 50 |
|---|---|---|---|---|---|
| VAE | ![]() |
![]() |
![]() |
| | | |
| Conv-VAE | ![]() |
![]() |
![]() |
![]() |
![]() |
4. Pre-trained model
Donwload link:















