Machine-Learning icon indicating copy to clipboard operation
Machine-Learning copied to clipboard

:zap:机器学习实战(Python3):kNN、决策树、贝叶斯、逻辑回归、SVM、线性回归、树回归

Results 7 Machine-Learning issues
Sort by recently updated
recently updated
newest added

作者在文中提到,将w展开为一个个独立特征,那么就可以将p(w/ci)展开为p(w0, w1, ... | ci)。那么在整个数据集中,应该有 p(w0_0) + p(w0_1) = 1。 但是在实际代码中,计算不同类别 p(w0) 处分母时,却加上了该数据行中单词出现的总次数,这里应该是有误的。如果将每个特征看做独立,这里应该只需要加1。 ``` def trainNB0(trainMatrix, trainCategory): nTrainDocs = len(trainMatrix) nWords = len(trainMatrix[0]) pAbusive = sum(trainCategory) / float(nTrainDocs) p0Num =...

1. Broadcasting is better than tile, Counter is better than count by iteration, list comprehension is better than simple `for`. 2. [index, :] == [index] in numpy 3. dict is...

D = np.multiply(D, np.exp(expon)) D = D / D.sum() 应该改为: Z = np.multiply(W, np.exp(expon)) W = np.multiply(W, np.exp(expon)) / Z..sum()