fast-reid
fast-reid copied to clipboard
visualization problem
使用的设备是4060 LAPTOP
当我尝试可视化训练的AGW模型时候出现下述报错,显存足够但无法调用(可以完成训练,以及训练中的验证)
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.55 GiB (GPU 0; 8.00 GiB total capacity; 335.96 MiB already allocated; 5.59 GiB free; 1.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
我的运行脚本如下
python demo/visualize_result.py --config-file logs/market1501/agw_R50/config.yaml --vis-label --dataset-name Market1501 --output logs/agw_R50_Market1501_vis --opts MODEL.WEIGHTS logs/market1501/agw_R50/model_best.pth
我的config文件如下
CUDNN_BENCHMARK: true
DATALOADER:
NUM_INSTANCE: 4
NUM_WORKERS: 0
SAMPLER_TRAIN: NaiveIdentitySampler
SET_WEIGHT: []
DATASETS:
COMBINEALL: false
NAMES:
- Market1501
TESTS:
- Market1501
INPUT:
AFFINE:
ENABLED: false
AUGMIX:
ENABLED: false
PROB: 0.0
AUTOAUG:
ENABLED: false
PROB: 0.0
CJ:
BRIGHTNESS: 0.15
CONTRAST: 0.15
ENABLED: false
HUE: 0.1
PROB: 0.5
SATURATION: 0.1
CROP:
ENABLED: false
RATIO:
- 0.75
- 1.3333333333333333
SCALE:
- 0.16
- 1
SIZE:
- 224
- 224
FLIP:
ENABLED: true
PROB: 0.5
PADDING:
ENABLED: true
MODE: constant
SIZE: 10
REA:
ENABLED: true
PROB: 0.5
VALUE:
- 123.675
- 116.28
- 103.53
RPT:
ENABLED: false
PROB: 0.5
SIZE_TEST:
- 256
- 128
SIZE_TRAIN:
- 256
- 128
KD:
EMA:
ENABLED: false
MOMENTUM: 0.999
MODEL_CONFIG: []
MODEL_WEIGHTS: []
MODEL:
BACKBONE:
ATT_DROP_RATE: 0.0
DEPTH: 50x
DROP_PATH_RATIO: 0.1
DROP_RATIO: 0.0
FEAT_DIM: 2048
LAST_STRIDE: 1
NAME: build_resnet_backbone
NORM: BN
PRETRAIN: true
PRETRAIN_PATH: ''
SIE_COE: 3.0
STRIDE_SIZE:
- 16
- 16
WITH_IBN: false
WITH_NL: true
WITH_SE: false
DEVICE: cuda:0
FREEZE_LAYERS: []
HEADS:
CLS_LAYER: Linear
EMBEDDING_DIM: 0
MARGIN: 0.0
NAME: EmbeddingHead
NECK_FEAT: before
NORM: BN
NUM_CLASSES: 751
POOL_LAYER: GeneralizedMeanPooling
SCALE: 1
WITH_BNNECK: true
LOSSES:
CE:
ALPHA: 0.2
EPSILON: 0.1
SCALE: 1.0
CIRCLE:
GAMMA: 128
MARGIN: 0.25
SCALE: 1.0
COSFACE:
GAMMA: 128
MARGIN: 0.25
SCALE: 1.0
FL:
ALPHA: 0.25
GAMMA: 2
SCALE: 1.0
NAME:
- CrossEntropyLoss
- TripletLoss
TRI:
HARD_MINING: false
MARGIN: 0.0
NORM_FEAT: false
SCALE: 1.0
META_ARCHITECTURE: Baseline
PIXEL_MEAN:
- 123.675
- 116.28
- 103.53
PIXEL_STD:
- 58.395
- 57.120000000000005
- 57.375
QUEUE_SIZE: 8192
WEIGHTS: 'D:\\OroChiLab\\fast-reid\\logs\\market1501\\agw_R50\\model_best.pth'
OUTPUT_DIR: logs/market1501/agw_R50
SOLVER:
AMP:
ENABLED: true
BASE_LR: 0.00035
BIAS_LR_FACTOR: 1.0
CHECKPOINT_PERIOD: 30
CLIP_GRADIENTS:
CLIP_TYPE: norm
CLIP_VALUE: 5.0
ENABLED: false
NORM_TYPE: 2.0
DELAY_EPOCHS: 0
ETA_MIN_LR: 1.0e-07
FREEZE_ITERS: 0
GAMMA: 0.1
HEADS_LR_FACTOR: 1.0
IMS_PER_BATCH: 64
MAX_EPOCH: 120
MOMENTUM: 0.9
NESTEROV: false
OPT: Adam
SCHED: MultiStepLR
STEPS:
- 40
- 90
WARMUP_FACTOR: 0.1
WARMUP_ITERS: 2000
WARMUP_METHOD: linear
WEIGHT_DECAY: 0.0005
WEIGHT_DECAY_BIAS: 0.0005
WEIGHT_DECAY_NORM: 0.0005
TEST:
AQE:
ALPHA: 3.0
ENABLED: false
QE_K: 5
QE_TIME: 1
EVAL_PERIOD: 30
FLIP:
ENABLED: false
IMS_PER_BATCH: 64
METRIC: cosine
PRECISE_BN:
DATASET: Market1501
ENABLED: false
NUM_ITER: 300
RERANK:
ENABLED: false
K1: 20
K2: 6
LAMBDA: 0.3
ROC:
ENABLED: false