Enzyme.jl icon indicating copy to clipboard operation
Enzyme.jl copied to clipboard

Julia bindings for the Enzyme automatic differentiator

Results 459 Enzyme.jl issues
Sort by recently updated
recently updated
newest added
trafficstars

MWE: ```julia using Enzyme, ForwardDiff p = rand(3) y = rand(3) tmp1 = rand(3) tmp2 = rand(3) tmp3 = rand(3*4) tmp3 = SubArray(tmp3, axes(tmp3)) tmp3 = reinterpret(ForwardDiff.Dual{ForwardDiff.Tag{Nothing, Float64}, Float64, 3},tmp3)...

Document behavior of backing arrays when using sparse arrays. Document #373

AD with respect to a struct that has a non-differentiable field fails ```julia struct Foo2{X,Y} x::X y::Y end test_f(f::Foo2) = f.x^2 julia> autodiff(test_f, Active(Foo2(3.0, 2.0))) (Foo2{Float64, Float64}(6.0, 0.0),) julia> autodiff(test_f,...

bug
Julia compatibility

bug
Julia compatibility
more information needed

``` using Enzyme Enzyme.API.printall!(true) function bad(@nospecialize(t)) t = Tuple{t...} return Base.unwrap_unionall(t) end @show bad((Int64,)) flush(stdout) @show Enzyme.fwddiff(bad, Duplicated, Duplicated((Int64,), (Int64,))) #,(Int64,))) ```

```julia using Enzyme n = 10 x = [i/(1.0+i) for i in 1:n] dx = ones(n) rx = zeros(n); drx = zeros(n) y = zeros(1); dy = zeros(1) ry =...

convert to test

TODO: - [ ] We need to emit write_barriers on write of Julia objects to the Julia managed tape - [ ] Codegen for 1.6/1,7 - [ ] Real runtime...

# Code ```julia import Pkg; Pkg.status() import Random import Enzyme const AV = AbstractVector{T} where T # ===== Set up objective function ===== normal_pdf(x::Real, mean::Real, var::Real) = exp(-(x - mean)^2...

bug
upstream

```julia using Enzyme, SparseArrays, LinearAlgebra # setup data θ = rand(3) x = rand(11) ν = rand(10) λ = rand(24) S = sprand(Float64, 6, 7, 0.1) Cp = sprand(Float64, 1,...