STSGCN
                                
                                 STSGCN copied to clipboard
                                
                                    STSGCN copied to clipboard
                            
                            
                            
                        AAAI 2020. Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting
STSGCN
AAAI 2020. Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting
url: paper/AAAI2020-STSGCN.pdf
Usage
Docker is recommended.
- install docker
- install nvidia-docker
- build image using cd docker && docker build -t stsgcn/mxnet_1.41_cu100 .
- download the data STSGCN_data.tar.gz with code: p72z
- uncompress data file using tar -zxvf data.tar.gz
- modify the term ctxinconfig/PEMS03/individual_GLU_mask_emb.jsonto match your GPU devices
- run code using docker run -ti --rm --runtime=nvidia -v $PWD:/mxnet stsgcn/mxnet_1.41_cu100 python3 main.py --config config/PEMS03/individual_GLU_mask_emb.json
If you are using Microsoft OpenPAI, modify the configurations saved in the folder pai_jobs to train STSGCNs on your clusters.
repo structure
| name | description | 
|---|---|
| config | configurations of STSGCN | 
| docker | dockerfile | 
| models | core of STSGCN | 
| pai_job | Microsoft OpenPAI configurations | 
| paper | paper of STSGCN | 
| test | pytest files | 
| load_params.py | read parameters from local files | 
| main.py | code of training STSGCN | 
| pytest.ini | pytest configurations | 
| requirements.txt | python packages requirements | 
| utils.py | tools |