Awesome-DeepLearning-Tutorials
Awesome-DeepLearning-Tutorials copied to clipboard
Links to useful online tutorials etc. about deep learning
Awesome deep learning and machine learning tutorials
Links to useful online tutorials, blogposts, images etc. all about deep learning and machine learning. This is a work in progress and I will continue to add to to this list as and when I find useful things.
Contributing
If you have any nice tutorials or links you think I should add please submit as an issue and I will look at putting them in the list. Also if any of the links are broken please let me know so I can remove them or find alternatives.
Contents
- Introducition to Machine Learning
- Deep Learning
- Neural Networks
- Large Language Models
- Convolutional Neural Networks
- Normalization
- Attention and Transformers
- Recurrent Neural Networks
- Tensorflow
- Tensorflow 2/Keras api
- Pytorch
- Linear Algebra
- Optimisation
- Generative Models
- Natural Language Processing
- Computer Vision
- Action recognition
- Object Detection
- Reinforcement Learning
- Anomaly Detection
- Diffusion models
- Projects
- Research papers
- Datasets
Introduction to Machine Learning
- Andrew Ng https://www.coursera.org/learn/machine-learning
- Elements of Statistical Learning (Ch.1-4/7) http://statweb.stanford.edu/%7Etibs/ElemStatLearn/printings/ESLII_print10.pdf
- Machine/Deep Learning cheatsheets https://github.com/kailashahirwar/cheatsheets-ai
- Geoffrey Hinton Neural Networks for Machine Learning https://www.coursera.org/learn/neural-networks
Deep Learning
- Andrew Ng (2017) https://www.coursera.org/specializations/deep-learning
Neural Networks
- Visual proof of NN universal approximation http://neuralnetworksanddeeplearning.com/chap4.html
Large Language Models
- Rotary Positional Embeddings (RoPE) https://medium.com/ai-insights-cobet/rotary-positional-embeddings-a-detailed-look-and-comprehensive-understanding-4ff66a874d83
Convolutional Neural Networks
- CNN basics explained well (explaining kernels) https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
- Explaining different convolution types https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
- Receptive field calculation https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807
- Calculate output size for Transpose Convolution https://www.quora.com/How-do-you-calculate-the-output-dimensions-of-a-deconvolution-network-layer
Normalization
- Experiments on placement of batchnorm in Resnets http://torch.ch/blog/2016/02/04/resnets.html
- Different normalization methods explained https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/
Attention
- Soft attention for images https://jhui.github.io/2017/03/15/Soft-and-hard-attention/
- seq2seq Encoder decoder attention explained https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
- Transformers explained http://jalammar.github.io/illustrated-transformer/
- Transformers explained https://towardsdatascience.com/transformers-141e32e69591
- Transformers explained http://mlexplained.com/2017/12/29/attention-is-all-you-need-explained/
Recurrent Neural Networks
- LSTM basics http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- CTC loss https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c
- Beam search decoding https://towardsdatascience.com/beam-search-decoding-in-ctc-trained-neural-networks-5a889a3d85a7
Tensorflow
- Freezing/saving and serving a model https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc
- Various tutorials/ipynb https://github.com/aymericdamien/TensorFlow-Examples
- Various resources https://github.com/astorfi/Awsome-TensorFlow-Resources
- Various resources https://github.com/jtoy/awesome-tensorflow
- Various resources https://github.com/astorfi/TensorFlow-World-Resources
- TFRecord example http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/
- TFRecord for images explained https://planspace.org/20170403-images_and_tfrecords/
- Visualise TF graphs in ipynb https://blog.jakuba.net/2017/05/30/tensorflow-visualization.html
- Profiling/tracing TF https://medium.com/towards-data-science/howto-profile-tensorflow-1a49fb18073d
- Eager mode (dynamic graphs) https://medium.com/@yaroslavvb/tensorflow-meets-pytorch-with-eager-mode-714cce161e6c
- Dataset api buffer_size meaning https://stackoverflow.com/questions/46444018/meaning-of-buffer-size-in-dataset-map-dataset-prefetch-and-dataset-shuffle
- Import a .pb model to tensorboard https://medium.com/@daj/how-to-inspect-a-pre-trained-tensorflow-model-5fd2ee79ced0
- Different Dataset API Iterators explained https://towardsdatascience.com/how-to-use-dataset-in-tensorflow-c758ef9e4428
- Scoping and sharing variables https://jhui.github.io/2017/03/08/TensorFlow-variable-sharing/
- Quantization aware training https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/quantize/README.md
- TFLite conversion https://github.com/tensorflow/tensorflow/blob/865b2783aad179eaf06161d016a42fbd4c18bfb4/tensorflow/contrib/lite/g3doc/convert/cmdline_examples.md
- tf.data https://dominikschmidt.xyz/tensorflow-data-pipeline/
Tensorflow 2.0 / Keras API
- Image classification basics https://lambdalabs.com/blog/tensorflow-2-0-tutorial-01-image-classification-basics/
- Word embeddings in Keras https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/
- Symbolic (functional) vs imperative (subclassing) api https://medium.com/tensorflow/what-are-symbolic-and-imperative-apis-in-tensorflow-2-0-dfccecb01021
- Overview of TF 2.0 high level apis https://medium.com/tensorflow/standardizing-on-keras-guidance-on-high-level-apis-in-tensorflow-2-0-bad2b04c819a
- Reinforcment learning in TensorFlow 2.0 http://inoryy.com/post/tensorflow2-deep-reinforcement-learning/
- Quantization https://gist.github.com/NobuoTsukamoto/0470fa22f3808f305db1fd4fbe01e3e4
PyTorch
- Variety of pretrained models and training scripts https://github.com/aaron-xichen/pytorch-playground
- Intro to PyTorch for Kaggle competitions https://github.com/bfortuner/pytorch-kaggle-starter
- Cheat sheet https://github.com/Tgaaly/pytorch-cheatsheet/blob/master/README.md
- Cheat sheet with examples https://github.com/bfortuner/pytorch-cheatsheet/blob/master/pytorch-cheatsheet.ipynb
- Migrating to PyTorch 0.4 https://pytorch.org/blog/pytorch-0_4_0-migration-guide/
- Dearling with variable length sequences https://medium.com/@sonicboom8/sentiment-analysis-with-variable-length-sequences-in-pytorch-6241635ae130
Linear Algebra
- https://medium.com/towards-data-science/linear-algebra-cheat-sheet-for-deep-learning-cd67aba4526c#.nfoveoe56
- http://parrt.cs.usfca.edu/doc/matrix-calculus/index.html
Optimisation
- Momentum - http://distill.pub/2017/momentum/
Generative Models
Variational Autoencoders
- http://kvfrans.com/variational-autoencoders-explained/
Generative Adversarial Networks (GANS)
- Overview of differences in losses for different GANS https://github.com/hwalsuklee/tensorflow-generative-model-collections
- 17 hacks for training GANS https://github.com/soumith/ganhacks
- Picture of why GANs are cool https://ai2-s2-public.s3.amazonaws.com/figures/2016-11-08/546b3592f59b3445ef12fba506b729c832198c33/2-Figure3-1.png
Natural language processing
- CS224n https://www.youtube.com/watch?v=OQQ-W_63UgQ&list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6
- CS224n cheat sheet https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
- Word2Vec http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
- Alternatives to RNN for encoding https://hanxiao.github.io/2018/06/25/4-Encoding-Blocks-You-Need-to-Know-Besides-LSTM-RNN-in-Tensorflow/
- Some PyTorch examples of basic NLP tasks https://github.com/lyeoni/nlp-tutorial
Automatic speech recognition and KWS
- Calculating MFCC http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
Computer vision
- CS231n https://www.youtube.com/watch?v=vT1JzLTH4G4&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv
- CS231n Cheat sheet https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks#filter
Semantic segmentation
- Overview of architectures https://medium.com/@arthur_ouaknine/review-of-deep-learning-algorithms-for-image-semantic-segmentation-509a600f7b57
Action recognition
- Summary of state of the art http://blog.qure.ai/notes/deep-learning-for-videos-action-recognition-review
Super resolution
- Intro to super resolution with cnn https://medium.com/@hirotoschwert/introduction-to-deep-super-resolution-c052d84ce8cf
Object detection
- Yolov3 https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/
- Yolov3 code http://leiluoray.com/2018/11/10/Implementing-YOLOV3-Using-PyTorch/?fbclid=IwAR2y0tNAxWq3kij4YFn99pW6jYB3CFmMd4gos2H1Al_bFMPgZ-QW_qekKb8
Reinforcement learning
- David Silver Deepmind lectures https://www.youtube.com/playlist?list=PLeJKOhW5z62XKURemUDc3N92Min9yaR12
- Intro to RL algorithms https://medium.com/@huangkh19951228/introduction-to-various-reinforcement-learning-algorithms-i-q-learning-sarsa-dqn-ddpg-72a5e0cb6287
- Intro to RL https://medium.freecodecamp.org/an-introduction-to-reinforcement-learning-4339519de419
Anomaly detection
- Autoencoder for fraud detection https://medium.com/@curiousily/credit-card-fraud-detection-using-autoencoders-in-keras-tensorflow-for-hackers-part-vii-20e0c85301bd
Diffusion models
- Cheat code for diffusion models https://sander.ai/2022/05/26/guidance.html
- Illustrated stable diffusion http://jalammar.github.io/illustrated-stable-diffusion/
- Stable diffusion using hugging face https://towardsdatascience.com/stable-diffusion-using-hugging-face-501d8dbdd8
- Stable diffusion using hugging face - variants https://towardsdatascience.com/stable-diffusion-using-hugging-face-variations-of-stable-diffusion-56fd2ab7a265
- Why do we need unconditional embedding https://forums.fast.ai/t/why-do-we-need-the-unconditioned-embedding/101134/11
- Stable diffusion code deep dive https://github.com/fastai/diffusion-nbs/blob/master/Stable%20Diffusion%20Deep%20Dive.ipynb
Recommender systems
- Intro to recommendation systems https://medium.com/datadriveninvestor/how-to-built-a-recommender-system-rs-616c988d64b2
Projects
Self driving cars
- https://github.com/CYHSM/carnd
RNN chatbot
- https://adeshpande3.github.io/How-I-Used-Deep-Learning-to-Train-a-Chatbot-to-Talk-Like-Me
Research Papers
- Collection of links https://github.com/terryum/awesome-deep-learning-papers/blob/master/README.md
- Collection of links https://github.com/sbrugman/deep-learning-papers
- Pose estimation https://arxiv.org/abs/1312.4659
- Object detection https://arxiv.org/abs/1311.2524
- Object detection https://arxiv.org/abs/1312.2249
- Object detection https://arxiv.org/abs/1412.1441
- Object detection https://arxiv.org/abs/1506.01497 (Faster R-CNN)
- Object detection https://arxiv.org/abs/1506.02640 (YOLO)
- Object detection https://arxiv.org/abs/1512.02325 (SSD)
- Object detection https://arxiv.org/abs/1611.10012 (Object detection comparison)
- Semantic segmentation https://arxiv.org/abs/1511.00561 (Segnet)
- Semantic segmentation https://arxiv.org/abs/1505.07293 (Segnet)
- Semantic segmentation https://arxiv.org/abs/1511.02680 (Bayesian Segnet)
- Network architectures https://arxiv.org/abs/1602.07360 (SqueezeNet)
- Network architectures https://arxiv.org/abs/1606.00373 (Fully Convolution ResNet)
- Re Identification https://arxiv.org/abs/1703.07737 (In defence of triplet loss)
- Depth estimation https://arxiv.org/abs/1406.2283 (Depth map prediction, multi-scale deep network)
- Depth estimation https://arxiv.org/abs/1411.4734 (Depth, surface normals & semnatic labels with common multi scale conv.)
- Depth estimation https://arxiv.org/abs/1411.6387 (Deep conv neural fields for depth estimation from a single image)
- Network understanding https://arxiv.org/abs/1701.04128 (Understanding effective receptive field in deep CNN)
- Self driving cars https://arxiv.org/pdf/1704.07911.pdf (Explaining How a DNN can steer a car NVIDIA)
- Resnet paper https://arxiv.org/pdf/1512.03385.pdf
- Quantization https://arxiv.org/pdf/1502.02551.pdf
- Quantization http://proceedings.mlr.press/v48/linb16.pdf
- Quantization https://www.microsoft.com/en-us/research/wp-content/uploads/2017/04/FxpNet-submitted.pdf
- Quantization https://arxiv.org/pdf/1703.03073.pdf
- Quantizatoin https://arxiv.org/pdf/1605.06402.pdf (ristretto)
- Super Resolution with GANs https://arxiv.org/pdf/1609.04802.pdf
- Instance segmentation https://arxiv.org/abs/1703.06870 (Mask R-CNN)
- EfficientNets (how to scale up network architectures) https://arxiv.org/pdf/1905.11946.pdf
- CNNs trained on ImageNet learn textures rather than shapes https://arxiv.org/pdf/1811.12231.pdf
Datasets
- NLP https://github.com/niderhoff/nlp-datasets
- MNIST png format https://github.com/myleott/mnist_png