Idempotent-Generative-Network
Idempotent-Generative-Network copied to clipboard
Idempotent Generative Network's unofficial pytorch implementation
Idempotent Generative Network
paper: Idempotent Generative Network, https://arxiv.org/abs/2311.01462
This is a simple unofficial implementation. We trained it on the Celeba dataset.
Usage
first, download the Celeba dataset and unzip it to the data folder.
then, install the requirements:
pip install -r requirements.txt
train
modify the parameters in config.yml as your needed and run:
python train.py
generate
model checkpoint with 1000 epoch training, download here.
These are the parameters of generate.py:
-cp: the path of checkpoint. default:./checkpoints/model.pth--config: the path of config file. default:./config.yml-bs: how many images to generate at once. default:16--nrow: how many images are displayed in a row, only valid whensteps=1. default:4--steps: the times of applying model. default:1--show: whether to show the generated images. default:False-sp: save path of the result image. default: None--device: the device to use. default:cuda--to_grayscale: whether to convert the generated images to grayscale. default:False
generate one step images:
python generate.py -cp "./checkpoints/model.pth" --config "./config.yml" -bs 128 --nrow 16 --show -sp "./result/one_step.png"

generate multi step images:
python generate.py -cp "./checkpoints/model.pth" --config "./config.yml" -bs 8 --steps 3 --show -sp "./result/three_steps.png"
