karpet icon indicating copy to clipboard operation
karpet copied to clipboard

Library for fetching coin/token historical data, trends and more.

WARNING

Thanks to GitHub's hostile policy the repository has migrated to Gitlab <https://gitlab.com/imn1/karpet>_.

This repository won't be updated anymore.

.. image:: https://raw.githubusercontent.com/im-n1/karpet/master/assets/logo.png :align: center

.. image:: https://img.shields.io/pypi/v/karpet.svg?color=0c7dbe :alt: PyPI

.. image:: https://img.shields.io/pypi/l/karpet.svg?color=0c7dbe :alt: PyPI - License

.. image:: https://img.shields.io/pypi/dm/karpet.svg?color=0c7dbe :alt: PyPI - Downloads

.. contents::

Karpet

Karpet is a tiny library with just a few dependencies for fetching coins/tokens metrics data from the internet.

It can provide following data:

  • coin/token historical price data (no limits)
  • google trends for the given list of keywords (longer period than official API)
  • twitter scraping for the given keywords (no limits)
  • much more info about crypto coins/tokens (no rate limits)

What is upcoming?

  • Reddit metrics
  • Have a request? Open an issue ;)

Dependencies

Library uses a few nifty dependencies and is Python 3.6+ only. There is no need to install dependencies you don't need. Therefore this library utilizes extras which install optional dependencies:

  • for Google trends - google

Usage

  1. Install the library via pip.

.. code-block:: bash

pip install karpet # Basics only pip install karpet[google] # With Google trends

  1. Import the library class first.

.. code-block:: python

from karpet import Karpet

fetch_crypto_historical_data()

Retrieves historical data.

.. code-block:: python

    k = Karpet(date(2019, 1, 1), date(2019, 5, 1))
    df = k.fetch_crypto_historical_data(id="ethereum")  # Dataframe with historical data.
    df.head()

                     price   market_cap total_volume
    2019-01-01  131.458725  1.36773e+10  1.36773e+10
    2019-01-02  138.144802  1.43923e+10  1.43923e+10
    2019-01-03  152.860453  1.59222e+10  1.59222e+10
    2019-01-04  146.730599  1.52777e+10  1.52777e+10
    2019-01-05  153.056567  1.59408e+10  1.59408e+10


fetch_crypto_exchanges()
~~~~~~~~~~~~~~~~~~~~~~~~
Retrieves exchange list.

.. code-block:: python

    k = Karpet()
    k.fetch_crypto_exchanges("nrg")
    ['DigiFinex', 'KuCoin', 'CryptoBridge', 'Bitbns', 'CoinExchange']

fetch_google_trends()
~~~~~~~~~~~~~~~~~~~~~
Retrieves Google Trends - in percents for the given date range.

.. code-block:: python

    k = Karpet(date(2019, 1, 1), date(2019, 5, 1))
    df = k.fetch_google_trends(kw_list=["bitcoin"])  # Dataframe with trends.
    df.head()

.. image:: https://raw.githubusercontent.com/im-n1/karpet/master/assets/google_trends.png

And with a few lines of code you can get a chart

.. code-block:: python

   df = df.set_index("date")
   df.plot()

.. image:: https://raw.githubusercontent.com/im-n1/karpet/master/assets/trends_chart.png

fetch_news()
~~~~~~~~~~~~
Retrieves crypto news.

.. code-block:: python

   k = Karpet()
   news = k.fetch_news("btc")  # Gets 10 news.
   print(news[0])
   {
      'url': 'https://cointelegraph.com/ ....',  # Truncated.
      'title': 'Shell Invests in Blockchain-Based Energy Startup',
      'description': 'The world’s fifth top oil and gas firm, Shell, has...',  # Truncated.
      'date': datetime.datetime(2019, 7, 28, 9, 24, tzinfo=datetime.timezone(datetime.timedelta(seconds=3600)))
      'image': 'https://images.cointelegraph.com/....jpg'  # Truncated.
   }
   news = k.fetch_news("btc", limit=30)  # Gets 30 news.

fetch_top_news()
~~~~~~~~~~~~~~~~
Retrieves top crypto news in 2 categories:

* Editor's choices - articles picked by editors
* Hot stories - articles with most views

.. code-block:: python

   k = Karpet()
   editors_choices, top_stories = k.fetch_top_news()
   print(len(editors_choices))
   5
   print(len(top_stories))
   5
   print(editors_choices[0])
   {
      'url': 'https://cointelegraph.com/...',  # Truncated.
      'title': 'Bank of China’s New Infographic Shows Why Bitcoin Price Is Going Up',
      'date': datetime.datetime(2019, 7, 27, 10, 7, tzinfo=datetime.timezone(datetime.timedelta(seconds=3600))),
      'image': 'https://images.cointelegraph.com/images/740_aHR...', # Truncated.
      'description': 'The Chinese central bank released on its website an ...'  # Truncated.
   }
   print(top_stories[0])
   {
      'url': 'https://cointelegraph.com/...',  # Truncated.
      'title': 'Bitcoin Price Shuns Volatility as Analysts Warn of Potential Drop to $7,000',
      'date': datetime.datetime(2019, 7, 27, 10, 7, tzinfo=datetime.timezone(datetime.timedelta(seconds=3600))),
      'image': 'https://images.cointelegraph.com/images/740_aHR0c...'  # Truncated.
      'description': 'Stability around $10,600 for Bitcoin price is ...'  # Truncated.
   }

get_coin_ids()
~~~~~~~~~~~~~~
Resolves coin ID's based on the given symbol (there are coins out there with identical symbol).

Use this to get distinctive coin ID which can be used as ``id`` param for
method ``fetch_crypto_historical_data()``.

.. code-block:: python

    k = Karpet()
    print(k.get_coin_ids("sta"))
    ['statera']


get_basic_data()
~~~~~~~~~~~~~~~~
Fetches coin/token basic data like:

``open_issues`` is only provided if ``total_issues`` and ``closed_issues`` are
available.

.. code-block:: python

    k = Karpet()
    print(k.get_basic_data(id="ethereum"))
    {
        'closed_issues': 5530,
        'commit_count_4_weeks': 40,
        'current_price': 3167.67,
        'forks': 11635,
        'market_cap': 371964284548,
        'name': 'Ethereum',
        'open_issues': 230,
        'pull_request_contributors': 552,
        'rank': 2,
        'reddit_accounts_active_48h': 2881.0,
        'reddit_average_comments_48h': 417.083,
        'reddit_average_posts_48h': 417.083,
        'reddit_subscribers': 1057875,
        'stars': 31680,
        'total_issues': 5760,
        'year_high': 4182.790285752286,
        'year_low': 321.0774351739628,
        'yoy_change': 695.9225871929757,  # growth/drop in percents
        'price_change_24': 120.1,
        'price_change_24_percents': 1.23
    }

get_quick_search_data()
~~~~~~~~~~~~~~~~~~~~~~~
Lists all coins/tokes with some basic info.

.. code-block:: python

    k = Karpet()
    print(k.get_quick_search_data()[0])
    {
        "name": "Bitcoin",
        "symbol": "BTC",
        "rank": 1,
        "slug": "bitcoin",
        "tokens": [
            "Bitcoin",
            "bitcoin",
            "BTC"
        ],
        "id": 1,
    }

fetch_crypto_live_data()
~~~~~~~~~~~~~~~~~~~~~~~~
Retrieves live market data.

.. code-block:: python

    k = Karpet()
    df = k.fetch_crypto_live_data(id="ethereum")  # Dataframe with live data.
    df.head()

                            open     high      low    close
    2023-01-16 20:00:00  1593.01  1595.05  1593.01  1594.28
    2023-01-16 20:30:00  1593.37  1593.37  1589.03  1589.35
    2023-01-16 21:00:00  1592.68  1593.66  1584.71  1587.87
    2023-01-16 21:30:00  1587.28  1587.28  1583.13  1583.13
    2023-01-16 22:00:00  1573.99  1580.11  1573.99  1579.97

Changelog
---------
[here](./CHANGELOG.md)

Credits
-------
This is my personal library I use in my long-term project. I can pretty much guarantee it will
live for a long time then. I will add new features over time and I more than welcome any
help or bug reports. Feel free to open an issue or merge request.

The code is is licensed under MIT license.