stacking
stacking copied to clipboard
Reinitialize weights of neural net
In Keras-implemented neural net, to avoid recompile, initial weights after compilation is saved and used at the next beginning of training in cross validation. However, the initial weights are same in all fold-training. So initial weights should be changed at each training.
A possible solution is passing the argument of compilation (e.g., optimizer, loss, and metrics). In binary_class.py,
class ModelV2(BaseModel):
def build_model(self):
model = Sequential()
model.add(Dense(64, input_shape=nn_input_dim_NN, init='he_normal'))
model.add(LeakyReLU(alpha=.00001))
model.add(Dropout(0.5))
model.add(Dense(output_dim, init='he_normal'))
model.add(Activation('softmax'))
sgd = SGD(lr=0.1, decay=1e-5, momentum=0.9, nesterov=True)
compile_options = {
'optimizer': sgd,
'loss': 'categorical_crossentropy',
'metrics': ["accuracy"]
}
return KerasClassifier(nn=model, compile_options=compile_options, **self.params)
In base.py,
import copy
class KerasClassifier(BaseEstimator, ClassifierMixin):
def __init__(self,nn):
self.nn = nn
def fit(self, X, y, X_test=None, y_test=None):
self.compiled_nn = copy.copy(self.nn)
self.compiled_nn.compile(**self.compile_options)
return self.compiled_nn(X, y)
But this approach leads memory consumption...