oll-python
oll-python copied to clipboard
Online machine learning algorithms (based on OLL C++ library)
oll-python
|travis| |coveralls| |version| |license|
This is a Python binding of the OLL library for machine learning.
Currently, OLL 0.03 supports following binary classification algorithms:
- Perceptron
- Averaged Perceptron
- Passive Agressive (PA, PA-I, PA-II, Kernelized)
- ALMA (modified slightly from original)
- Confidence Weighted Linear-Classification.
For details of oll, see: http://code.google.com/p/oll
Installation
::
$ pip install oll
OLL library is bundled, so you don't need to install it separately.
Usage
.. code:: python
import oll
You can choose algorithms in
"P" -> Perceptron,
"AP" -> Averaged Perceptron,
"PA" -> Passive Agressive,
"PA1" -> Passive Agressive-I,
"PA2" -> Passive Agressive-II,
"PAK" -> Kernelized Passive Agressive,
"CW" -> Confidence Weighted Linear-Classification,
"AL" -> ALMA
o = oll.oll("CW", C=1.0, bias=0.0) o.add({0: 1.0, 1: 2.0, 2: -1.0}, 1) # train o.classify({0:1.0, 1:1.0}) # predict o.save('oll.model') o.load('oll.model')
scikit-learn like fit/predict interface
import numpy as np array = np.array([[1, 2, -1], [0, 0, 1]]) o.fit(array, [1, -1]) o.predict(np.array([[1, 2, -1], [0, 0, 1]]))
=> [1, -1]
from scipy.sparse import csr_matrix matrix = csr_matrix([[1, 2, -1], [0, 0, 1]]) o.fit(matrix, [1, -1]) o.predict(matrix)
=> [1, -1]
Multi label classification
import time import oll from sklearn.multiclass import OutputCodeClassifier from sklearn import datasets, cross_validation, metrics
dataset = datasets.load_digits() ALGORITHMS = ("P", "AP", "PA", "PA1", "PA2", "PAK", "CW", "AL") for algorithm in ALGORITHMS: print(algorithm) occ_predicts = [] expected = [] start = time.time() for (train_idx, test_idx) in cross_validation.StratifiedKFold(dataset.target, n_folds=10, shuffle=True): clf = OutputCodeClassifier(oll.oll(algorithm)) clf.fit(dataset.data[train_idx], dataset.target[train_idx]) occ_predicts += list(clf.predict(dataset.data[test_idx])) expected += list(dataset.target[test_idx]) print('Elapsed time: %s' % (time.time() - start)) print('Accuracy', metrics.accuracy_score(expected, occ_predicts))
=> P
=> Elapsed time: 109.82188701629639
=> Accuracy 0.770172509738
=> AP
=> Elapsed time: 111.42936396598816
=> Accuracy 0.760155815248
=> PA
=> Elapsed time: 110.95964503288269
=> Accuracy 0.74735670562
=> PA1
=> Elapsed time: 111.39844799041748
=> Accuracy 0.806343906511
=> PA2
=> Elapsed time: 115.12716913223267
=> Accuracy 0.766277128548
=> PAK
=> Elapsed time: 119.53838682174683
=> Accuracy 0.77796327212
=> CW
=> Elapsed time: 121.20785689353943
=> Accuracy 0.771285475793
=> AL
=> Elapsed time: 116.52497220039368
=> Accuracy 0.785754034502
Note
- This module requires C++ compiler to build.
- oll.cpp & oll.hpp : Copyright (c) 2011, Daisuke Okanohara
- oll_swig_wrap.cxx is generated based on 'oll_swig.i' in oll-ruby (https://github.com/syou6162/oll-ruby)
License
New BSD License.
.. |travis| image:: https://travis-ci.org/ikegami-yukino/oll-python.svg?branch=master :target: https://travis-ci.org/ikegami-yukino/oll-python :alt: travis-ci.org .. |coveralls| image:: https://coveralls.io/repos/ikegami-yukino/oll-python/badge.png :target: https://coveralls.io/r/ikegami-yukino/oll-python :alt: coveralls.io
.. |version| image:: https://img.shields.io/pypi/v/oll.svg :target: http://pypi.python.org/pypi/oll/ :alt: latest version
.. |license| image:: https://img.shields.io/pypi/l/oll.svg :target: http://pypi.python.org/pypi/oll/ :alt: license