tensor-house icon indicating copy to clipboard operation
tensor-house copied to clipboard

Wrong Calculation of Total Profit [price-optimization-using-dqn-reinforcement-learning]

Open immortal3 opened this issue 4 years ago • 0 comments

Filename : pricing/price-optimization-using-dqn-reinforcement-learning.ipynb

at t=0, the Below function evaluates with p[0] and p[-1] as parameters which seems incorrect to me. because p[-1] in python corresponds to last element of the array.

def profit_total(p, unit_cost, q_0, k, a, b):
  return profit_t(p[0], p[0], q_0, k, 0, 0, unit_cost) + sum(map(lambda t: profit_t(p[t], p[t-1], q_0, k, a, b, unit_cost), range(len(p))))

to fix this, we can use range(1,len(p)).

def profit_total(p, unit_cost, q_0, k, a, b):
  return profit_t(p[0], p[0], q_0, k, 0, 0, unit_cost) + sum(map(lambda t: profit_t(p[t], p[t-1], q_0, k, a, b, unit_cost), range(1,len(p))))

@ikatsov Do let me know if I am wrong or misunderstood something.

immortal3 avatar May 28 '20 12:05 immortal3