在哪里用kalman预测了tracks的新位置?
在论文里,提到用kalman预测了tracks的新位置,14-16行。
但在代码里,并没有用到预测的新位置。
# Predict the current location with KF
STrack.multi_predict(strack_pool)
dists = matching.iou_distance(strack_pool, detections)
multi_predict用kalman预测了新的mean,covariance,但在iou_distance的计算里面,用的是旧的tlbr。
We use the updated mean of Kalman Filter here: https://github.com/ifzhang/ByteTrack/blob/191e983fa8d9a29173943cb75a771a90e527a47f/yolox/tracker/byte_tracker.py#L92
We use the updated mean of Kalman Filter here:
https://github.com/ifzhang/ByteTrack/blob/191e983fa8d9a29173943cb75a771a90e527a47f/yolox/tracker/byte_tracker.py#L92
Becuase, it is after iou distance calculation, that the track will update,
# Predict the current location with KF
STrack.multi_predict(strack_pool)
this prediction only use for next frame iou distance calculation. If move this part behind linear assignment, will not effect the results. Am I right?
multi_predict更新了track的mean和covariant,mean的前四个数就是新box的位置 (center x, center y, ratio, height), 在iou_distance的计算里, 是把(center x, center y, ratio, height)转化成tlwh再转化成tlbr,然后再算iou