ByteTrack
ByteTrack copied to clipboard
Stuck at yolox.core.trainer:148 - init prefetcher, this might take one minute or less...
Hi, @ifzhang Thank you for providing such a great model with each and every detail. I am trying to train ByteTrack on a custom dataset and stuck at this line "yolox.core.trainer:148 - init prefetcher, this might take one minute or less... ". Does anyone, what could be the possible problem?
Thank you for your help.
2022-01-21 00:38:25.411 | INFO | yolox.core.launch:launch_by_subprocess:145 -
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
2022-01-21 00:38:27.978 | INFO | yolox.core.launch:_distributed_worker:184 - Rank 1 initialization finished. 2022-01-21 00:38:27.989 | INFO | yolox.core.launch:_distributed_worker:184 - Rank 2 initialization finished. 2022-01-21 00:38:28.015 | INFO | yolox.core.launch:_distributed_worker:184 - Rank 3 initialization finished. 2022-01-21 00:38:28.020 | INFO | yolox.core.launch:_distributed_worker:184 - Rank 0 initialization finished. 2022-01-21 00:38:33 | INFO | yolox.core.trainer:124 - args: Namespace(batch_size=32, ckpt='/data/stars/user/abali/ByteTrack/pretrained/yolox_x.pth', devices=4, dist_backend='nccl', dist_url=None, exp_file='/data/stars/user/abali/ByteTrack/exps/example/mot/yolox_x_act.py', experiment_name='yolox_x_act', fp16=True, local_rank=0, machine_rank=0, name=None, num_machines=1, occupy=True, opts=[], resume=False, start_epoch=None) 2022-01-21 00:38:33 | INFO | yolox.core.trainer:125 - exp value: ╒══════════════════╤═══════════════════╕ │ keys │ values │ ╞══════════════════╪═══════════════════╡ │ seed │ None │ ├──────────────────┼───────────────────┤ │ output_dir │ './YOLOX_outputs' │ ├──────────────────┼───────────────────┤ │ print_interval │ 1 │ ├──────────────────┼───────────────────┤ │ eval_interval │ 5 │ ├──────────────────┼───────────────────┤ │ num_classes │ 1 │ ├──────────────────┼───────────────────┤ │ depth │ 1.33 │ ├──────────────────┼───────────────────┤ │ width │ 1.25 │ ├──────────────────┼───────────────────┤ │ data_num_workers │ 4 │ ├──────────────────┼───────────────────┤ │ input_size │ (400, 720) │ ├──────────────────┼───────────────────┤ │ random_size │ (18, 32) │ ├──────────────────┼───────────────────┤ │ train_ann │ 'train.json' │ ├──────────────────┼───────────────────┤ │ val_ann │ 'test.json' │ ├──────────────────┼───────────────────┤ │ degrees │ 10.0 │ ├──────────────────┼───────────────────┤ │ translate │ 0.1 │ ├──────────────────┼───────────────────┤ │ scale │ (0.1, 2) │ ├──────────────────┼───────────────────┤ │ mscale │ (0.8, 1.6) │ ├──────────────────┼───────────────────┤ │ shear │ 2.0 │ ├──────────────────┼───────────────────┤ │ perspective │ 0.0 │ ├──────────────────┼───────────────────┤ │ enable_mixup │ True │ ├──────────────────┼───────────────────┤ │ warmup_epochs │ 1 │ ├──────────────────┼───────────────────┤ │ max_epoch │ 80 │ ├──────────────────┼───────────────────┤ │ warmup_lr │ 0 │ ├──────────────────┼───────────────────┤ │ basic_lr_per_img │ 1.5625e-05 │ ├──────────────────┼───────────────────┤ │ scheduler │ 'yoloxwarmcos' │ ├──────────────────┼───────────────────┤ │ no_aug_epochs │ 10 │ ├──────────────────┼───────────────────┤ │ min_lr_ratio │ 0.05 │ ├──────────────────┼───────────────────┤ │ ema │ True │ ├──────────────────┼───────────────────┤ │ weight_decay │ 0.0005 │ ├──────────────────┼───────────────────┤ │ momentum │ 0.9 │ ├──────────────────┼───────────────────┤ │ exp_name │ 'yolox_x_act' │ ├──────────────────┼───────────────────┤ │ test_size │ (400, 720) │ ├──────────────────┼───────────────────┤ │ test_conf │ 0.1 │ ├──────────────────┼───────────────────┤ │ nmsthre │ 0.7 │ ╘══════════════════╧═══════════════════╛ 2022-01-21 00:38:34 | INFO | yolox.core.trainer:131 - Model Summary: Params: 99.00M, Gflops: 197.93 2022-01-21 00:38:34 | INFO | yolox.core.trainer:289 - loading checkpoint for fine tuning 2022-01-21 00:38:36 | WARNING | yolox.utils.checkpoint:27 - Shape of head.cls_preds.0.weight in checkpoint is torch.Size([80, 320, 1, 1]), while shape of head.cls_preds.0.weight in model is torch.Size([1, 320, 1, 1]). 2022-01-21 00:38:36 | WARNING | yolox.utils.checkpoint:27 - Shape of head.cls_preds.0.bias in checkpoint is torch.Size([80]), while shape of head.cls_preds.0.bias in model is torch.Size([1]). 2022-01-21 00:38:36 | WARNING | yolox.utils.checkpoint:27 - Shape of head.cls_preds.1.weight in checkpoint is torch.Size([80, 320, 1, 1]), while shape of head.cls_preds.1.weight in model is torch.Size([1, 320, 1, 1]). 2022-01-21 00:38:36 | WARNING | yolox.utils.checkpoint:27 - Shape of head.cls_preds.1.bias in checkpoint is torch.Size([80]), while shape of head.cls_preds.1.bias in model is torch.Size([1]). 2022-01-21 00:38:36 | WARNING | yolox.utils.checkpoint:27 - Shape of head.cls_preds.2.weight in checkpoint is torch.Size([80, 320, 1, 1]), while shape of head.cls_preds.2.weight in model is torch.Size([1, 320, 1, 1]). 2022-01-21 00:38:36 | WARNING | yolox.utils.checkpoint:27 - Shape of head.cls_preds.2.bias in checkpoint is torch.Size([80]), while shape of head.cls_preds.2.bias in model is torch.Size([1]). 2022-01-21 00:38:36 | INFO | yolox.data.datasets.mot:39 - loading annotations into memory... 2022-01-21 00:38:50 | INFO | yolox.data.datasets.mot:39 - Done (t=14.65s) 2022-01-21 00:38:50 | INFO | pycocotools.coco:88 - creating index... 2022-01-21 00:38:53 | INFO | pycocotools.coco:88 - index created! 2022-01-21 00:39:12 | INFO | yolox.core.trainer:148 - init prefetcher, this might take one minute or less...
I also have this problem,but I don't konw how to solve it.
you can try to set -d
to 1 that you can tell what occured the errror.
same
Hi, @ifzhang Thank you for providing such a great model with each and every detail. I am trying to train ByteTrack on a custom dataset and stuck at this line "yolox.core.trainer:148 - init prefetcher, this might take one minute or less... ". Does anyone, what could be the possible problem?
Thank you for your help.
2022-01-21 00:38:25.411 | INFO | yolox.core.launch:launch_by_subprocess:145 -
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
2022-01-21 00:38:27.978 | INFO | yolox.core.launch:_distributed_worker:184 - Rank 1 initialization finished. 2022-01-21 00:38:27.989 | INFO | yolox.core.launch:_distributed_worker:184 - Rank 2 initialization finished. 2022-01-21 00:38:28.015 | INFO | yolox.core.launch:_distributed_worker:184 - Rank 3 initialization finished. 2022-01-21 00:38:28.020 | INFO | yolox.core.launch:_distributed_worker:184 - Rank 0 initialization finished. 2022-01-21 00:38:33 | INFO | yolox.core.trainer:124 - args: Namespace(batch_size=32, ckpt='/data/stars/user/abali/ByteTrack/pretrained/yolox_x.pth', devices=4, dist_backend='nccl', dist_url=None, exp_file='/data/stars/user/abali/ByteTrack/exps/example/mot/yolox_x_act.py', experiment_name='yolox_x_act', fp16=True, local_rank=0, machine_rank=0, name=None, num_machines=1, occupy=True, opts=[], resume=False, start_epoch=None) 2022-01-21 00:38:33 | INFO | yolox.core.trainer:125 - exp value: ╒══════════════════╤═══════════════════╕ │ keys │ values │ ╞══════════════════╪═══════════════════╡ │ seed │ None │ ├──────────────────┼───────────────────┤ │ output_dir │ './YOLOX_outputs' │ ├──────────────────┼───────────────────┤ │ print_interval │ 1 │ ├──────────────────┼───────────────────┤ │ eval_interval │ 5 │ ├──────────────────┼───────────────────┤ │ num_classes │ 1 │ ├──────────────────┼───────────────────┤ │ depth │ 1.33 │ ├──────────────────┼───────────────────┤ │ width │ 1.25 │ ├──────────────────┼───────────────────┤ │ data_num_workers │ 4 │ ├──────────────────┼───────────────────┤ │ input_size │ (400, 720) │ ├──────────────────┼───────────────────┤ │ random_size │ (18, 32) │ ├──────────────────┼───────────────────┤ │ train_ann │ 'train.json' │ ├──────────────────┼───────────────────┤ │ val_ann │ 'test.json' │ ├──────────────────┼───────────────────┤ │ degrees │ 10.0 │ ├──────────────────┼───────────────────┤ │ translate │ 0.1 │ ├──────────────────┼───────────────────┤ │ scale │ (0.1, 2) │ ├──────────────────┼───────────────────┤ │ mscale │ (0.8, 1.6) │ ├──────────────────┼───────────────────┤ │ shear │ 2.0 │ ├──────────────────┼───────────────────┤ │ perspective │ 0.0 │ ├──────────────────┼───────────────────┤ │ enable_mixup │ True │ ├──────────────────┼───────────────────┤ │ warmup_epochs │ 1 │ ├──────────────────┼───────────────────┤ │ max_epoch │ 80 │ ├──────────────────┼───────────────────┤ │ warmup_lr │ 0 │ ├──────────────────┼───────────────────┤ │ basic_lr_per_img │ 1.5625e-05 │ ├──────────────────┼───────────────────┤ │ scheduler │ 'yoloxwarmcos' │ ├──────────────────┼───────────────────┤ │ no_aug_epochs │ 10 │ ├──────────────────┼───────────────────┤ │ min_lr_ratio │ 0.05 │ ├──────────────────┼───────────────────┤ │ ema │ True │ ├──────────────────┼───────────────────┤ │ weight_decay │ 0.0005 │ ├──────────────────┼───────────────────┤ │ momentum │ 0.9 │ ├──────────────────┼───────────────────┤ │ exp_name │ 'yolox_x_act' │ ├──────────────────┼───────────────────┤ │ test_size │ (400, 720) │ ├──────────────────┼───────────────────┤ │ test_conf │ 0.1 │ ├──────────────────┼───────────────────┤ │ nmsthre │ 0.7 │ ╘══════════════════╧═══════════════════╛ 2022-01-21 00:38:34 | INFO | yolox.core.trainer:131 - Model Summary: Params: 99.00M, Gflops: 197.93 2022-01-21 00:38:34 | INFO | yolox.core.trainer:289 - loading checkpoint for fine tuning 2022-01-21 00:38:36 | WARNING | yolox.utils.checkpoint:27 - Shape of head.cls_preds.0.weight in checkpoint is torch.Size([80, 320, 1, 1]), while shape of head.cls_preds.0.weight in model is torch.Size([1, 320, 1, 1]). 2022-01-21 00:38:36 | WARNING | yolox.utils.checkpoint:27 - Shape of head.cls_preds.0.bias in checkpoint is torch.Size([80]), while shape of head.cls_preds.0.bias in model is torch.Size([1]). 2022-01-21 00:38:36 | WARNING | yolox.utils.checkpoint:27 - Shape of head.cls_preds.1.weight in checkpoint is torch.Size([80, 320, 1, 1]), while shape of head.cls_preds.1.weight in model is torch.Size([1, 320, 1, 1]). 2022-01-21 00:38:36 | WARNING | yolox.utils.checkpoint:27 - Shape of head.cls_preds.1.bias in checkpoint is torch.Size([80]), while shape of head.cls_preds.1.bias in model is torch.Size([1]). 2022-01-21 00:38:36 | WARNING | yolox.utils.checkpoint:27 - Shape of head.cls_preds.2.weight in checkpoint is torch.Size([80, 320, 1, 1]), while shape of head.cls_preds.2.weight in model is torch.Size([1, 320, 1, 1]). 2022-01-21 00:38:36 | WARNING | yolox.utils.checkpoint:27 - Shape of head.cls_preds.2.bias in checkpoint is torch.Size([80]), while shape of head.cls_preds.2.bias in model is torch.Size([1]). 2022-01-21 00:38:36 | INFO | yolox.data.datasets.mot:39 - loading annotations into memory... 2022-01-21 00:38:50 | INFO | yolox.data.datasets.mot:39 - Done (t=14.65s) 2022-01-21 00:38:50 | INFO | pycocotools.coco:88 - creating index... 2022-01-21 00:38:53 | INFO | pycocotools.coco:88 - index created! 2022-01-21 00:39:12 | INFO | yolox.core.trainer:148 - init prefetcher, this might take one minute or less...
me too,how you fix it
same
me too,how you fix it
Set the argument of -d to 1 to identify the certain error you made.

Set the argument of -d to 1 to identify the certain error you made.
you mean this ?
No, this is a warning and I mean error. what the message show after you run this?
No, this is a warning and I mean error. what the message show after you run this?

No, this is a warning and I mean error. what the message show after you run this?

No, this is a warning and I mean error. what the message show after you run this?
l have two error, which one please?
Apparantly, the first error dude!You input img is None. To make sure your image is not corruped.
Apparantly, the first error dude!You input img is None. To make sure your image is not corruped.
is this:An error has been caught in function 'launch', process 'MainProcess' (11136), thread 'MainThread' (44096): ?
you mean l get wrong in the input of image?
This one:
No, this is a warning and I mean error. what the message show after you run this?
![]()
If you meet the error as you start trainning, the error is about your dataloader which formed abnormally. If you meet it after a few minuters within one epoch it is about one image corrupted in your datasets.
This one:
No, this is a warning and I mean error. what the message show after you run this?
![]()
If you meet the error as you start trainning, the error is about your dataloader which formed abnormally. If you meet it after a few minuters within one epoch it is about one image corrupted in your datasets.

This one:
No, this is a warning and I mean error. what the message show after you run this?
![]()
If you meet the error as you start trainning, the error is about your dataloader which formed abnormally. If you meet it after a few minuters within one epoch it is about one image corrupted in your datasets.
thank for you help, now l get this question when l run: python3 tools/track.py -f exps/example/mot/yolox_x_ablation.py -c pretrained/bytetrack_ablation.pth.tar -b 1 -d 1 --fp16 --fuse

why?