SuperYOLO
SuperYOLO copied to clipboard
请问论文中表Ⅶ的各算法在多模态下的数据结果您是如何实现的,因为我并没有找到公开的算法代码
如果可以的话,能否请您分享一份YOLOrs和YOLO Fusion的代码,我的邮箱是[email protected]
我按照论文的结构复现的,这是YOLOrs的yaml文件
#20210318 zjq #parameters nc: 8 # number of classes depth_multiple: 1.0 # model depth multiple width_multiple: 1.0 # layer channel multiple
#anchors anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
steam: [[-1, 1, Conv, [32, 3, 1]], # 0 [-1, 1, Conv, [64, 3, 2]], # 1-P1/2 [-1, 1, Bottleneck, [64]], [-1, 1, Conv, [32, 1, 1]], ]
backbone: #[from, number, module, args] [ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4 [-1, 2, Bottleneck, [128]], [-1, 1, Conv, [256, 3, 2]], # 5-P3/8 [-1, 8, Bottleneck, [256]], [-1, 1, Conv, [512, 3, 2]], # 7-P4/16 [-1, 8, Bottleneck, [512]], ]
#YOLOv3 head head: [ #[-1, 1, Bottleneck, [1024, False]], [-1, 1, Conv, [256, 1, 1]], [-1, 1, Conv, [512, 3, 1]], [-1, 1, Conv, [256, 1, 1]], [-1, 1, Conv, [512, 3, 1]], [-1, 1, Conv, [256, 1, 1]], [-1, 1, Conv, [512, 3, 1]], [-1, 1, Conv, [14, 1, 1]], # (P4/128-large)
[-2, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 3], 1, Concat, [1]], # cat backbone P3 6
[-1, 1, Conv, [128, 1, 1]],
[-1, 1, Conv, [256, 3, 1]],
[-1, 1, Conv, [128, 1, 1]],
[-1, 1, Conv, [256, 3, 1]],
[-1, 1, Conv, [128, 1, 1]],
[-1, 1, Conv, [256, 3, 1]],
[-1, 1, Conv, [14, 1, 1]], # (P4/64-medium)
[-2, 1, Conv, [64, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [3, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, -2], 1, Concat, [1]], # cat backbone P3 6 [-1, 1, Conv, [64, 1, 1]], [-1, 1, Conv, [128, 3, 1]], [-1, 1, Conv, [64, 1, 1]], [-1, 1, Conv, [128, 3, 1]], [-1, 1, Conv, [64, 1, 1]], [-1, 1, Conv, [128, 3, 1]], [-1, 1, Conv, [14, 1, 1]], # (P3/32 -small)
[[33, 22, 12], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) 27 22 15 ]