GKT
GKT copied to clipboard
无法复现结果
当使用脚本训练时
python scripts/train.py +experiment=gkt_nuscenes_vehicle_kernel_7x1.yaml data.dataset_dir=<path/to/nuScenes> data.labels_dir=<path/to/labels>
训练完毕后,指标较低
使用github上模型进行验证时 python scripts/eval.py +experiment=gkt_nuscenes_vehicle_kernel_7x1.yaml data.dataset_dir=<path/to/nuScenes> data.labels_dir=<path/to/labels> experiment.ckptt <path/to/checkpoint> 报错 optimizer_loop.optim_progress.optimizer.step.total.completed = self._loaded_checkpoint["global_step"] KeyError: 'global_step'
您好,我想问一下您是用所有数据做的,还是仅仅用mini数据
我仅用mini数据,一直报错
@BigQ0710 所有数据
首先感谢您的回复,其次我报了这样的错误,我用的就是keyframe数据啊,可是还是报错了,想问一下怎么处理,谢谢。
(GKT) wxq@wxq:~/GKT/segmentation$ python scripts/train.py +experiment=gkt_nuscenes_vehicle_kernel_7x1.yaml data.dataset_dir=/home/wxq/GKT/media/datasets/nuscenes data.labels_dir=/home/wxq/GKT/media/datasets/cvt_labels_nuscenes
Global seed set to 2022
Loaded pretrained weights for efficientnet-b4
[2022-12-15 09:28:58,700][torch.distributed.nn.jit.instantiator][INFO] - Created a temporary directory at /tmp/tmpvgtnko5d
[2022-12-15 09:28:58,701][torch.distributed.nn.jit.instantiator][INFO] - Writing /tmp/tmpvgtnko5d/_remote_module_non_sriptable.py
[2022-12-15 09:28:59,270][main][INFO] - Searching /home/wxq/GKT/segmentation/logs.
GPU available: True, used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
Trainer(limit_train_batches=1.0)
was configured so 100% of the batches per epoch will be used..
Trainer(limit_val_batches=1.0)
was configured so 100% of the batches will be used..
Trainer(val_check_interval=1.0)
was configured so validation will run at the end of the training epoch..
Global seed set to 2022
Initializing distributed: GLOBAL_RANK: 0, MEMBER: 1/1
[2022-12-15 09:28:59,542][torch.distributed.distributed_c10d][INFO] - Added key: store_based_barrier_key:1 to store for rank: 0
[2022-12-15 09:28:59,543][torch.distributed.distributed_c10d][INFO] - Rank 0: Completed store-based barrier for key:store_based_barrier_key:1 with 1 nodes.
distributed_backend=nccl All distributed processes registered. Starting with 1 processes
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
| Name | Type | Params
0 | backbone | CrossViewTransformer | 1.2 M
1 | loss_func | MultipleLoss | 0
2 | metrics | MetricCollection | 0
1.2 M Trainable params
0 Non-trainable params
1.2 M Total params
4.701 Total estimated model params size (MB)
/home/wxq/GKT/segmentation/cross_view_transformer/tabular_logger.py:36: UserWarning: Experiment logs directory /home/wxq/GKT/segmentation/logs/lightning_logs/version_7 exists and is not empty. Previous log files in this directory will be deleted when the new ones are saved!
rank_zero_warn(
/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:486: PossibleUserWarning: Your val_dataloader
's sampler has shuffling enabled, it is strongly recommended that you turn shuffling off for val/test/predict dataloaders.
rank_zero_warn(
[2022-12-15 09:29:34,821][cross_view_transformer.tabular_logger][INFO] - lr-AdamW:0.000400, step:0
/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py:2719: UserWarning: Using trainer.logger when Trainer is configured to use multiple loggers. This behavior will change in v1.8 when LoggerCollection is removed, and trainer.logger will return the first logger in trainer.loggers
rank_zero_warn(
/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/utilities/warnings.py:44: LightningDeprecationWarning: pytorch_lightning.utilities.warnings.rank_zero_warn has been deprecated in v1.6 and will be removed in v1.8. Use the equivalent function from the pytorch_lightning.utilities.rank_zero module instead.
new_rank_zero_deprecation(
/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/utilities/warnings.py:49: UserWarning: Invalid logger <pytorch_lightning.loggers.base.LoggerCollection object at 0x7fa5a29786a0>
return new_rank_zero_warn(*args, **kwargs)
[2022-12-15 09:29:53,785][root][INFO] - Reducer buckets have been rebuilt in this iteration.
Error executing job with overrides: ['+experiment=gkt_nuscenes_vehicle_kernel_7x1.yaml', 'data.dataset_dir=/home/wxq/GKT/media/datasets/nuscenes', 'data.labels_dir=/home/wxq/GKT/media/datasets/cvt_labels_nuscenes']
Traceback (most recent call last):
File "scripts/train.py", line 70, in main
trainer.fit(model_module, datamodule=data_module, ckpt_path=ckpt_path)
File "/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 771, in fit
self._call_and_handle_interrupt(
File "/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 722, in _call_and_handle_interrupt
return self.strategy.launcher.launch(trainer_fn, *args, trainer=self, **kwargs)
File "/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/strategies/launchers/subprocess_script.py", line 93, in launch
return function(*args, **kwargs)
File "/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 812, in _fit_impl
results = self._run(model, ckpt_path=self.ckpt_path)
File "/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1237, in _run
results = self._run_stage()
File "/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1324, in _run_stage
return self._run_train()
File "/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1354, in _run_train
self.fit_loop.run()
File "/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/loops/base.py", line 204, in run
self.advance(*args, **kwargs)
File "/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/loops/fit_loop.py", line 269, in advance
self._outputs = self.epoch_loop.run(self._data_fetcher)
File "/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/loops/base.py", line 204, in run
self.advance(*args, **kwargs)
File "/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/loops/epoch/training_epoch_loop.py", line 171, in advance
batch = next(data_fetcher)
File "/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/utilities/fetching.py", line 184, in next
return self.fetching_function()
File "/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/utilities/fetching.py", line 259, in fetching_function
self._fetch_next_batch(self.dataloader_iter)
File "/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/utilities/fetching.py", line 273, in _fetch_next_batch
batch = next(iterator)
File "/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/supporters.py", line 553, in next
return self.request_next_batch(self.loader_iters)
File "/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/supporters.py", line 565, in request_next_batch
return apply_to_collection(loader_iters, Iterator, next)
File "/home/wxq/.local/lib/python3.8/site-packages/pytorch_lightning/utilities/apply_func.py", line 99, in apply_to_collection
return function(data, *args, **kwargs)
File "/home/wxq/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 530, in next
data = self._next_data()
File "/home/wxq/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1204, in _next_data
return self._process_data(data)
File "/home/wxq/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1250, in _process_data
data.reraise()
File "/home/wxq/.local/lib/python3.8/site-packages/torch/_utils.py", line 457, in reraise
raise exception
FileNotFoundError: Caught FileNotFoundError in DataLoader worker process 2.
Original Traceback (most recent call last):
File "/home/wxq/.local/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 287, in _worker_loop
data = fetcher.fetch(index)
File "/home/wxq/.local/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 49, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/home/wxq/.local/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 49, in
@Isaac-xie Did you use the pretrained model provided by the author? This is my training result:

@GoroYeh56 Thank you for your kind sharing. How did you use the pretrained model? I thought it would load it automatically if I just downloaded it. However, my training results are very low. So I think the pretrained model may not be loaded during my training.
@Isaac-xie @GoroYeh56 @JacksonVation Hello,I want to know why my training metrics are different from yours? Some parts are missing, e.g., "iou_with_occlisions." I haven't modified the validation code.