Tensorflow-JS-Projects
Tensorflow-JS-Projects copied to clipboard
Web projects using Tensorflow JS, Plotly, D3, Echarts, NumJS, and NumericJS
Tensorflow-JS-Projects
Web projects using Tensorflow JS, Plotly, D3, Echarts, NumJS, and NumericJS
Completed models
- Tensorboard-like histogram visualization on MNIST
- Decision boundaries for IRIS using PCA and SVD
- Linear, Polynomial, Ridge, Lasso and Elasticnet Regression
- Stock forecasting and investment simulation with distribution study
- Malaysia Export products forecasting
- Trading Agent using Evolution Strategy
Incoming models
- Realtime sentiment analysis
- Realtime char generator
How to run
- Just click any .html and wait the output, thats all!
Output
Malaysia Export products forecasting
Stock forecasting
MNIST with layers histogram, mnist/feed-forward-mnist-histogram.html
IRIS with PCA decision boundaries, mnist/pca.html
linear regression, regression/linear-regression.html
elasticnet regression, regression/elastic-regression.html
Feed-forward on MNIST, mnist/feed-forward-mnist.html
Done load MNIST dataset, total row 10000
Epoch: 1, avg loss: 1.8914892367827587, avg acc: 0.5321514423076923
Epoch: 2, avg loss: 1.0076198738354902, avg acc: 0.8060897435897436
Epoch: 3, avg loss: 0.5955630428133867, avg acc: 0.8642828525641025
Epoch: 4, avg loss: 0.4525927151433932, avg acc: 0.8887219551282052
Epoch: 5, avg loss: 0.3820862218928643, avg acc: 0.9001402243589743
Epoch: 6, avg loss: 0.338365969606317, avg acc: 0.9095552884615384
Epoch: 7, avg loss: 0.3073786131751079, avg acc: 0.9163661858974359
Epoch: 8, avg loss: 0.2836516798975376, avg acc: 0.9223758012820513
Epoch: 9, avg loss: 0.2643589421342581, avg acc: 0.9267828525641025
Epoch: 10, avg loss: 0.2480414705350995, avg acc: 0.932792467948718
Done training!
Conv2D on MNIST, mnist/conv-mnist.html
Done load MNIST dataset, total row 10000
Epoch: 1, avg loss: 2.2892294388550978, avg acc: 0.1833934294871795
Epoch: 2, avg loss: 2.228218048046797, avg acc: 0.4563301282051282
Epoch: 3, avg loss: 2.053275716610444, avg acc: 0.563301282051282
Epoch: 4, avg loss: 1.6820037135711083, avg acc: 0.6386217948717948
Epoch: 5, avg loss: 1.2453415164580712, avg acc: 0.7159455128205128
Epoch: 6, avg loss: 0.9533616136281918, avg acc: 0.7562099358974359
Epoch: 7, avg loss: 0.7915175690864905, avg acc: 0.7830528846153846
Epoch: 8, avg loss: 0.693353934929921, avg acc: 0.803886217948718
Epoch: 9, avg loss: 0.6254916565540509, avg acc: 0.8218149038461539
Epoch: 10, avg loss: 0.5740557246101208, avg acc: 0.8349358974358975
Done training!
RNN LSTM on MNIST, mnist/rnn-lstm-mnist.html
Done load MNIST dataset, total row 10000
Epoch: 1, avg loss: 1.939207171782469, avg acc: 0.32081330128205127
Epoch: 2, avg loss: 1.1817189363332896, avg acc: 0.5842347756410257
Epoch: 3, avg loss: 0.7812266132006278, avg acc: 0.7482972756410257
Epoch: 4, avg loss: 0.5921771041093729, avg acc: 0.8126001602564102
Epoch: 5, avg loss: 0.4583902078179213, avg acc: 0.859375
Epoch: 6, avg loss: 0.36646934713308627, avg acc: 0.8894230769230769
Epoch: 7, avg loss: 0.30778571504812974, avg acc: 0.9084535256410257
Epoch: 8, avg loss: 0.26533992569416, avg acc: 0.9195713141025641
Epoch: 9, avg loss: 0.24064976473649344, avg acc: 0.9273838141025641
Epoch: 10, avg loss: 0.20142345815801468, avg acc: 0.9407051282051282
Done training!
Dataset used, data/
- MNIST
- Iris
- Bahasa Sentiment
- Stock market
- Dummy multivariate dataset