yolov5_obb
yolov5_obb copied to clipboard
yolov5 + csl_label.(Oriented Object Detection)(Rotation Detection)(Rotated BBox)基于yolov5的旋转目标检测
验证的图片也没有这张 为什么会出现这个错误 
git上拉下项目,过完install.md,用预训练模型可以运行 python val.py --task 'val' --device 0 --save-json --batch-size 2 --data 'data/yolov5obb_demo_split.yaml' --name 'obb_demo_split' 但是自己训练的时候,使用 python train.py --device 3 报错RuntimeError: PytorchStreamReader failed reading zip archive: failed finding central directory 使用项目自带的数据集,python...
val: WARNING: dataset/split_val/images/P2802__1__824___4225.png: ignoring corrupt image/label: 'dict' object has no attribute 'index' Class Images Labels P R [email protected] [email protected]:.95: 100%|██████████| 560/560 [00:34
数据集是自制的,训练过程、预测过程都能跑通,但是实际的效果存在一些比较奇怪的问题 1、召回率非常低,漏检情况特别严重 2、best.pt权重的实际效果,可能还不如 last.pt的效果 3、训练中train/val box_loss基本上不变 下面是我的各个文件 hyp.yaml&opt.yaml  results.png  train_batch0,jpg&train_batch1.jpg  train_batch2,jpg&train_batch3.jpg  val_batch0_labels.jpg&val_batch0_pred  val_batch1_labels.jpg&val_batch1_pred 
我使用自己的数据集训练出现了以下问题,想请教一下: 训练数据集270张,数据集建立的是单类、密集小目标识别,进行训练,效果并不好:map一直为0       val_batch0_labels.jpg  val_batch0_pred.jpg  hyp: ``` lr0: 0.01 lrf: 0.2 momentum: 0.937 weight_decay: 0.0005 warmup_epochs: 150 warmup_momentum: 0.8 warmup_bias_lr: 0.1 box: 0.05...
直接从仓库中拉取代码,并用以下命令直接训练 `python train.py --weights weights/yolov5x.pt --data data/yolov5obb_demo.yaml --hyp data/hyps/obb/hyp.finetune_dota.yaml --epochs 10 --batch-size 1 --img 1024 --device 0` 训练过程中loss下降,但验证的时候指标均为0,并且显示labels也为0
Thanks for sharing your project with the community. I would like to know, how did the model calculated the rotated angle of the detected objects ? Can you please share...
 训练时出现上图的错误,按照install.md和getstart.md执行的,不知道哪里出现错误。
预测框颜色调整
我想将预测框长边和短边的颜色设置不同,该如何修改?
新指标的定义
我想定义一个新的评价指标,比如将角度偏差定义小于10度,iou大于0.5的框定义为tp,我应该在哪里改动?