ISTR icon indicating copy to clipboard operation
ISTR copied to clipboard

RuntimeError: CUDA out of memory. Tried to allocate 672.00 MiB (GPU 0; 15.78 GiB total capacity; 13.42 GiB already allocated; 50.75 MiB free; 14.41 GiB reserved in total by PyTorch)

Open aymennturki opened this issue 2 years ago • 3 comments

dist_url='tcp://127.0.0.1:49152', eval_only=False, machine_rank=0, num_gpus=1, num_machines=1, opts=[], resume=False) [08/25 11:15:41 detectron2]: Contents of args.config_file=projects/ISTR/configs/ISTR-AE-R50-3x.yaml: BASE: "Base-ISTR.yaml" MODEL: WEIGHTS: "detectron2://ImageNetPretrained/torchvision/R-50.pkl" RESNETS: DEPTH: 50 STRIDE_IN_1X1: False ISTR: NUM_PROPOSALS: 300 NUM_CLASSES: 5 MASK_ENCODING_METHOD: "AE" PATH_COMPONENTS: "/content/drive/MyDrive/imenselmi/ISTR_TRAIN/ISTR/projects/AE/checkpoints/AE_112_256.t7" DATASETS: TRAIN: ("train",) TEST: ("val",) SOLVER: STEPS: (210000, 250000) MAX_ITER: 270000 INPUT: FORMAT: "RGB"

[08/25 11:15:41 detectron2]: Running with full config: CUDNN_BENCHMARK: true DATALOADER: ASPECT_RATIO_GROUPING: true FILTER_EMPTY_ANNOTATIONS: true NUM_WORKERS: 4 REPEAT_THRESHOLD: 0.0 SAMPLER_TRAIN: TrainingSampler DATASETS: PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000 PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000 PROPOSAL_FILES_TEST: [] PROPOSAL_FILES_TRAIN: [] TEST:

  • val TRAIN:
  • train GLOBAL: HACK: 1.0 INPUT: CROP: ENABLED: true SIZE:
    • 384
    • 600 TYPE: absolute_range FORMAT: RGB MASK_FORMAT: polygon MAX_SIZE_TEST: 1333 MAX_SIZE_TRAIN: 1333 MIN_SIZE_TEST: 800 MIN_SIZE_TRAIN:
  • 416
  • 448
  • 480
  • 512
  • 544
  • 576
  • 608
  • 640
  • 672
  • 704
  • 736
  • 768
  • 800
  • 832
  • 864
  • 896
  • 928
  • 960
  • 992
  • 1024
  • 1056
  • 1088 MIN_SIZE_TRAIN_SAMPLING: choice RANDOM_FLIP: horizontal LSJ_AUG: false MODEL: ANCHOR_GENERATOR: ANGLES:
      • -90
      • 0
      • 90 ASPECT_RATIOS:
      • 0.5
      • 1.0
      • 2.0 NAME: DefaultAnchorGenerator OFFSET: 0.0 SIZES:
      • 32
      • 64
      • 128
      • 256
      • 512 BACKBONE: FREEZE_AT: -1 NAME: build_resnet_fpn_backbone DEVICE: cuda FPN: FUSE_TYPE: sum IN_FEATURES:
    • res2
    • res3
    • res4
    • res5 NORM: '' OUT_CHANNELS: 256 ISTR: ALPHA: 0.25 CLASS_WEIGHT: 2.0 DEEP_SUPERVISION: true DIM_DYNAMIC: 64 DIM_FEEDFORWARD: 2048 DROPOUT: 0.0 FEAT_WEIGHT: 1.0 GAMMA: 2.0 GIOU_WEIGHT: 2.0 HIDDEN_DIM: 256 IOU_LABELS:
    • 0
    • 1 IOU_THRESHOLDS:
    • 0.5 L1_WEIGHT: 5.0 MASK_ENCODING_METHOD: AE MASK_FEAT_DIM: 256 MASK_SIZE: 112 MASK_WEIGHT: 5.0 NHEADS: 8 NO_OBJECT_WEIGHT: 0.1 NUM_CLASSES: 5 NUM_CLS: 3 NUM_DYNAMIC: 2 NUM_HEADS: 6 NUM_MASK: 3 NUM_PROPOSALS: 300 NUM_REG: 3 PATH_COMPONENTS: /content/drive/MyDrive/imenselmi/ISTR_TRAIN/ISTR/projects/AE/checkpoints/AE_112_256.t7 PRIOR_PROB: 0.01 KEYPOINT_ON: false LOAD_PROPOSALS: false MASK_ON: true META_ARCHITECTURE: ISTR PANOPTIC_FPN: COMBINE: ENABLED: true INSTANCES_CONFIDENCE_THRESH: 0.5 OVERLAP_THRESH: 0.5 STUFF_AREA_LIMIT: 4096 INSTANCE_LOSS_WEIGHT: 1.0 PIXEL_MEAN:
  • 123.675
  • 116.28
  • 103.53 PIXEL_STD:
  • 58.395
  • 57.12
  • 57.375 PROPOSAL_GENERATOR: MIN_SIZE: 0 NAME: RPN RESNETS: DEFORM_MODULATED: false DEFORM_NUM_GROUPS: 1 DEFORM_ON_PER_STAGE:
    • false
    • false
    • false
    • false DEPTH: 50 NORM: FrozenBN NUM_GROUPS: 1 OUT_FEATURES:
    • res2
    • res3
    • res4
    • res5 RES2_OUT_CHANNELS: 256 RES5_DILATION: 1 STEM_OUT_CHANNELS: 64 STRIDE_IN_1X1: false WIDTH_PER_GROUP: 64 RETINANET: BBOX_REG_LOSS_TYPE: smooth_l1 BBOX_REG_WEIGHTS: &id001
    • 1.0
    • 1.0
    • 1.0
    • 1.0 FOCAL_LOSS_ALPHA: 0.25 FOCAL_LOSS_GAMMA: 2.0 IN_FEATURES:
    • p3
    • p4
    • p5
    • p6
    • p7 IOU_LABELS:
    • 0
    • -1
    • 1 IOU_THRESHOLDS:
    • 0.4
    • 0.5 NMS_THRESH_TEST: 0.5 NORM: '' NUM_CLASSES: 80 NUM_CONVS: 4 PRIOR_PROB: 0.01 SCORE_THRESH_TEST: 0.05 SMOOTH_L1_LOSS_BETA: 0.1 TOPK_CANDIDATES_TEST: 1000 ROI_BOX_CASCADE_HEAD: BBOX_REG_WEIGHTS:
      • 10.0
      • 10.0
      • 5.0
      • 5.0
      • 20.0
      • 20.0
      • 10.0
      • 10.0
      • 30.0
      • 30.0
      • 15.0
      • 15.0 IOUS:
    • 0.5
    • 0.6
    • 0.7 ROI_BOX_HEAD: BBOX_REG_LOSS_TYPE: smooth_l1 BBOX_REG_LOSS_WEIGHT: 1.0 BBOX_REG_WEIGHTS:
    • 10.0
    • 10.0
    • 5.0
    • 5.0 CLS_AGNOSTIC_BBOX_REG: false CONV_DIM: 256 FC_DIM: 1024 NAME: '' NORM: '' NUM_CONV: 0 NUM_FC: 0 POOLER_RESOLUTION: 7 POOLER_SAMPLING_RATIO: 2 POOLER_TYPE: ROIAlignV2 SMOOTH_L1_BETA: 0.0 TRAIN_ON_PRED_BOXES: false ROI_HEADS: BATCH_SIZE_PER_IMAGE: 512 IN_FEATURES:
    • p2
    • p3
    • p4
    • p5 IOU_LABELS:
    • 0
    • 1 IOU_THRESHOLDS:
    • 0.5 NAME: Res5ROIHeads NMS_THRESH_TEST: 0.5 NUM_CLASSES: 80 POSITIVE_FRACTION: 0.25 PROPOSAL_APPEND_GT: true SCORE_THRESH_TEST: 0.05 ROI_KEYPOINT_HEAD: CONV_DIMS:
    • 512
    • 512
    • 512
    • 512
    • 512
    • 512
    • 512
    • 512 LOSS_WEIGHT: 1.0 MIN_KEYPOINTS_PER_IMAGE: 1 NAME: KRCNNConvDeconvUpsampleHead NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true NUM_KEYPOINTS: 17 POOLER_RESOLUTION: 14 POOLER_SAMPLING_RATIO: 0 POOLER_TYPE: ROIAlignV2 ROI_MASK_HEAD: CLS_AGNOSTIC_MASK: false CONV_DIM: 256 NAME: MaskRCNNConvUpsampleHead NORM: '' NUM_CONV: 0 POOLER_RESOLUTION: 14 POOLER_SAMPLING_RATIO: 0 POOLER_TYPE: ROIAlignV2 RPN: BATCH_SIZE_PER_IMAGE: 256 BBOX_REG_LOSS_TYPE: smooth_l1 BBOX_REG_LOSS_WEIGHT: 1.0 BBOX_REG_WEIGHTS: *id001 BOUNDARY_THRESH: -1 CONV_DIMS:
    • -1 HEAD_NAME: StandardRPNHead IN_FEATURES:
    • res4 IOU_LABELS:
    • 0
    • -1
    • 1 IOU_THRESHOLDS:
    • 0.3
    • 0.7 LOSS_WEIGHT: 1.0 NMS_THRESH: 0.7 POSITIVE_FRACTION: 0.5 POST_NMS_TOPK_TEST: 1000 POST_NMS_TOPK_TRAIN: 2000 PRE_NMS_TOPK_TEST: 6000 PRE_NMS_TOPK_TRAIN: 12000 SMOOTH_L1_BETA: 0.0 SEM_SEG_HEAD: COMMON_STRIDE: 4 CONVS_DIM: 128 IGNORE_VALUE: 255 IN_FEATURES:
    • p2
    • p3
    • p4
    • p5 LOSS_WEIGHT: 1.0 NAME: SemSegFPNHead NORM: GN NUM_CLASSES: 54 SWINT: APE: false DEPTHS:
    • 2
    • 2
    • 6
    • 2 DROP_PATH_RATE: 0.2 EMBED_DIM: 96 MLP_RATIO: 4 NUM_HEADS:
    • 3
    • 6
    • 12
    • 24 OUT_FEATURES:
    • stage2
    • stage3
    • stage4
    • stage5 WINDOW_SIZE: 7 WEIGHTS: detectron2://ImageNetPretrained/torchvision/R-50.pkl OUTPUT_DIR: ./output SEED: 2333333 SOLVER: AMP: ENABLED: false BACKBONE_MULTIPLIER: 1.0 BASE_LR: 2.5e-05 BIAS_LR_FACTOR: 1.0 CHECKPOINT_PERIOD: 5000 CLIP_GRADIENTS: CLIP_TYPE: full_model CLIP_VALUE: 1.0 ENABLED: true NORM_TYPE: 2.0 GAMMA: 0.1 IMS_PER_BATCH: 16 LR_SCHEDULER_NAME: WarmupMultiStepLR MAX_ITER: 270000 MOMENTUM: 0.9 NESTEROV: false OPTIMIZER: ADAMW REFERENCE_WORLD_SIZE: 0 STEPS:
  • 210000
  • 250000 WARMUP_FACTOR: 0.01 WARMUP_ITERS: 1000 WARMUP_METHOD: linear WEIGHT_DECAY: 0.0001 WEIGHT_DECAY_BIAS: null WEIGHT_DECAY_NORM: 0.0 TEST: AUG: ENABLED: false FLIP: true MAX_SIZE: 4000 MIN_SIZES:
    • 400
    • 500
    • 600
    • 700
    • 800
    • 900
    • 1000
    • 1100
    • 1200 DETECTIONS_PER_IMAGE: 100 EVAL_PERIOD: 7330 EXPECTED_RESULTS: [] KEYPOINT_OKS_SIGMAS: [] PRECISE_BN: ENABLED: false NUM_ITER: 200 VERSION: 2 VIS_PERIOD: 0

[08/25 11:15:41 detectron2]: Full config saved to ./output/config.yaml [08/25 11:15:47 d2.engine.defaults]: Model: ISTR( (backbone): FPN( (fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1)) (fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1)) (fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1)) (fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1)) (fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (top_block): LastLevelMaxPool() (bottom_up): ResNet( (stem): BasicStem( (conv1): Conv2d( 3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) ) ) (res2): Sequential( (0): BottleneckBlock( (shortcut): Conv2d( 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) ) (conv1): Conv2d( 64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) ) (conv2): Conv2d( 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) ) (conv3): Conv2d( 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) ) ) (1): BottleneckBlock( (conv1): Conv2d( 256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) ) (conv2): Conv2d( 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) ) (conv3): Conv2d( 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) ) ) (2): BottleneckBlock( (conv1): Conv2d( 256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) ) (conv2): Conv2d( 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) ) (conv3): Conv2d( 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) ) ) ) (res3): Sequential( (0): BottleneckBlock( (shortcut): Conv2d( 256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) ) (conv1): Conv2d( 256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) ) (conv2): Conv2d( 128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) ) (conv3): Conv2d( 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) ) ) (1): BottleneckBlock( (conv1): Conv2d( 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) ) (conv2): Conv2d( 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) ) (conv3): Conv2d( 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) ) ) (2): BottleneckBlock( (conv1): Conv2d( 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) ) (conv2): Conv2d( 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) ) (conv3): Conv2d( 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) ) ) (3): BottleneckBlock( (conv1): Conv2d( 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) ) (conv2): Conv2d( 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) ) (conv3): Conv2d( 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) ) ) ) (res4): Sequential( (0): BottleneckBlock( (shortcut): Conv2d( 512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) ) (conv1): Conv2d( 512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) ) (conv2): Conv2d( 256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) ) (conv3): Conv2d( 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) ) ) (1): BottleneckBlock( (conv1): Conv2d( 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) ) (conv2): Conv2d( 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) ) (conv3): Conv2d( 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) ) ) (2): BottleneckBlock( (conv1): Conv2d( 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) ) (conv2): Conv2d( 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) ) (conv3): Conv2d( 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) ) ) (3): BottleneckBlock( (conv1): Conv2d( 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) ) (conv2): Conv2d( 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) ) (conv3): Conv2d( 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) ) ) (4): BottleneckBlock( (conv1): Conv2d( 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) ) (conv2): Conv2d( 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) ) (conv3): Conv2d( 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) ) ) (5): BottleneckBlock( (conv1): Conv2d( 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) ) (conv2): Conv2d( 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) ) (conv3): Conv2d( 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) ) ) ) (res5): Sequential( (0): BottleneckBlock( (shortcut): Conv2d( 1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) ) (conv1): Conv2d( 1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) ) (conv2): Conv2d( 512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) ) (conv3): Conv2d( 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) ) ) (1): BottleneckBlock( (conv1): Conv2d( 2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) ) (conv2): Conv2d( 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) ) (conv3): Conv2d( 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) ) ) (2): BottleneckBlock( (conv1): Conv2d( 2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) ) (conv2): Conv2d( 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) ) (conv3): Conv2d( 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) ) ) ) ) ) (pos_embeddings): Embedding(300, 256) (init_proposal_boxes): Embedding(300, 4) (IFE): ImgFeatExtractor() (mask_E): Encoder( (encoder): Sequential( (0): Conv2d(1, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=True) (3): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=True) (6): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (8): ELU(alpha=True) (9): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (10): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (11): ELU(alpha=True) (12): Conv2d(128, 256, kernel_size=(7, 7), stride=(1, 1)) (13): View() ) ) (mask_D): Decoder( (decoder): Sequential( (0): View() (1): ConvTranspose2d(256, 128, kernel_size=(7, 7), stride=(1, 1)) (2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ELU(alpha=1.0, inplace=True) (4): up_conv( (up): Sequential( (0): Upsample(scale_factor=2.0, mode=bilinear) (1): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ELU(alpha=1.0, inplace=True) ) ) (5): up_conv( (up): Sequential( (0): Upsample(scale_factor=2.0, mode=bilinear) (1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ELU(alpha=1.0, inplace=True) ) ) (6): up_conv( (up): Sequential( (0): Upsample(scale_factor=2.0, mode=bilinear) (1): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ELU(alpha=1.0, inplace=True) ) ) (7): up_conv( (up): Sequential( (0): Upsample(scale_factor=2.0, mode=bilinear) (1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ELU(alpha=1.0, inplace=True) ) ) (8): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1)) (9): Sigmoid() (10): View() ) ) (head): DynamicHead( (box_pooler): ROIPooler( (level_poolers): ModuleList( (0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=2, aligned=True) (1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=2, aligned=True) (2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=2, aligned=True) (3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=2, aligned=True) ) ) (mask_pooler): ROIPooler( (level_poolers): ModuleList( (0): ROIAlign(output_size=(28, 28), spatial_scale=0.25, sampling_ratio=2, aligned=True) (1): ROIAlign(output_size=(28, 28), spatial_scale=0.125, sampling_ratio=2, aligned=True) (2): ROIAlign(output_size=(28, 28), spatial_scale=0.0625, sampling_ratio=2, aligned=True) (3): ROIAlign(output_size=(28, 28), spatial_scale=0.03125, sampling_ratio=2, aligned=True) ) ) (head_series): ModuleList( (0): RCNNHead( (self_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True) ) (inst_interact): DynamicConv( (dynamic_layer): Linear(in_features=256, out_features=32768, bias=True) (norm1): LayerNorm((64,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (activation): ELU(alpha=1.0, inplace=True) (out_layer): Linear(in_features=12544, out_features=256, bias=True) (norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True) ) (linear1): Linear(in_features=256, out_features=2048, bias=True) (dropout): Dropout(p=0.0, inplace=False) (linear2): Linear(in_features=2048, out_features=256, bias=True) (norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (dropout1): Dropout(p=0.0, inplace=False) (dropout2): Dropout(p=0.0, inplace=False) (dropout3): Dropout(p=0.0, inplace=False) (activation): ELU(alpha=1.0, inplace=True) (cls_module): ModuleList( (0): Linear(in_features=256, out_features=256, bias=False) (1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (2): ELU(alpha=1.0, inplace=True) (3): Linear(in_features=256, out_features=256, bias=False) (4): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (5): ELU(alpha=1.0, inplace=True) (6): Linear(in_features=256, out_features=256, bias=False) (7): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (8): ELU(alpha=1.0, inplace=True) ) (reg_module): ModuleList( (0): Linear(in_features=256, out_features=256, bias=False) (1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (2): ELU(alpha=1.0, inplace=True) (3): Linear(in_features=256, out_features=256, bias=False) (4): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (5): ELU(alpha=1.0, inplace=True) (6): Linear(in_features=256, out_features=256, bias=False) (7): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (8): ELU(alpha=1.0, inplace=True) ) (mask_module): Sequential( (0): Conv2d(256, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=True) (3): Conv2d(256, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=True) (6): Conv2d(256, 256, kernel_size=(7, 7), stride=(1, 1)) ) (ret_roi_layer_1): conv_block( (conv): Sequential( (0): Conv2d(256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=1.0, inplace=True) (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=1.0, inplace=True) ) ) (ret_roi_layer_2): conv_block( (conv): Sequential( (0): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=1.0, inplace=True) (3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=1.0, inplace=True) ) ) (class_logits): Linear(in_features=256, out_features=5, bias=True) (bboxes_delta): Linear(in_features=256, out_features=4, bias=True) ) (1): RCNNHead( (self_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True) ) (inst_interact): DynamicConv( (dynamic_layer): Linear(in_features=256, out_features=32768, bias=True) (norm1): LayerNorm((64,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (activation): ELU(alpha=1.0, inplace=True) (out_layer): Linear(in_features=12544, out_features=256, bias=True) (norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True) ) (linear1): Linear(in_features=256, out_features=2048, bias=True) (dropout): Dropout(p=0.0, inplace=False) (linear2): Linear(in_features=2048, out_features=256, bias=True) (norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (dropout1): Dropout(p=0.0, inplace=False) (dropout2): Dropout(p=0.0, inplace=False) (dropout3): Dropout(p=0.0, inplace=False) (activation): ELU(alpha=1.0, inplace=True) (cls_module): ModuleList( (0): Linear(in_features=256, out_features=256, bias=False) (1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (2): ELU(alpha=1.0, inplace=True) (3): Linear(in_features=256, out_features=256, bias=False) (4): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (5): ELU(alpha=1.0, inplace=True) (6): Linear(in_features=256, out_features=256, bias=False) (7): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (8): ELU(alpha=1.0, inplace=True) ) (reg_module): ModuleList( (0): Linear(in_features=256, out_features=256, bias=False) (1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (2): ELU(alpha=1.0, inplace=True) (3): Linear(in_features=256, out_features=256, bias=False) (4): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (5): ELU(alpha=1.0, inplace=True) (6): Linear(in_features=256, out_features=256, bias=False) (7): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (8): ELU(alpha=1.0, inplace=True) ) (mask_module): Sequential( (0): Conv2d(256, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=True) (3): Conv2d(256, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=True) (6): Conv2d(256, 256, kernel_size=(7, 7), stride=(1, 1)) ) (ret_roi_layer_1): conv_block( (conv): Sequential( (0): Conv2d(256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=1.0, inplace=True) (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=1.0, inplace=True) ) ) (ret_roi_layer_2): conv_block( (conv): Sequential( (0): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=1.0, inplace=True) (3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=1.0, inplace=True) ) ) (class_logits): Linear(in_features=256, out_features=5, bias=True) (bboxes_delta): Linear(in_features=256, out_features=4, bias=True) ) (2): RCNNHead( (self_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True) ) (inst_interact): DynamicConv( (dynamic_layer): Linear(in_features=256, out_features=32768, bias=True) (norm1): LayerNorm((64,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (activation): ELU(alpha=1.0, inplace=True) (out_layer): Linear(in_features=12544, out_features=256, bias=True) (norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True) ) (linear1): Linear(in_features=256, out_features=2048, bias=True) (dropout): Dropout(p=0.0, inplace=False) (linear2): Linear(in_features=2048, out_features=256, bias=True) (norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (dropout1): Dropout(p=0.0, inplace=False) (dropout2): Dropout(p=0.0, inplace=False) (dropout3): Dropout(p=0.0, inplace=False) (activation): ELU(alpha=1.0, inplace=True) (cls_module): ModuleList( (0): Linear(in_features=256, out_features=256, bias=False) (1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (2): ELU(alpha=1.0, inplace=True) (3): Linear(in_features=256, out_features=256, bias=False) (4): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (5): ELU(alpha=1.0, inplace=True) (6): Linear(in_features=256, out_features=256, bias=False) (7): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (8): ELU(alpha=1.0, inplace=True) ) (reg_module): ModuleList( (0): Linear(in_features=256, out_features=256, bias=False) (1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (2): ELU(alpha=1.0, inplace=True) (3): Linear(in_features=256, out_features=256, bias=False) (4): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (5): ELU(alpha=1.0, inplace=True) (6): Linear(in_features=256, out_features=256, bias=False) (7): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (8): ELU(alpha=1.0, inplace=True) ) (mask_module): Sequential( (0): Conv2d(256, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=True) (3): Conv2d(256, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=True) (6): Conv2d(256, 256, kernel_size=(7, 7), stride=(1, 1)) ) (ret_roi_layer_1): conv_block( (conv): Sequential( (0): Conv2d(256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=1.0, inplace=True) (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=1.0, inplace=True) ) ) (ret_roi_layer_2): conv_block( (conv): Sequential( (0): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=1.0, inplace=True) (3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=1.0, inplace=True) ) ) (class_logits): Linear(in_features=256, out_features=5, bias=True) (bboxes_delta): Linear(in_features=256, out_features=4, bias=True) ) (3): RCNNHead( (self_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True) ) (inst_interact): DynamicConv( (dynamic_layer): Linear(in_features=256, out_features=32768, bias=True) (norm1): LayerNorm((64,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (activation): ELU(alpha=1.0, inplace=True) (out_layer): Linear(in_features=12544, out_features=256, bias=True) (norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True) ) (linear1): Linear(in_features=256, out_features=2048, bias=True) (dropout): Dropout(p=0.0, inplace=False) (linear2): Linear(in_features=2048, out_features=256, bias=True) (norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (dropout1): Dropout(p=0.0, inplace=False) (dropout2): Dropout(p=0.0, inplace=False) (dropout3): Dropout(p=0.0, inplace=False) (activation): ELU(alpha=1.0, inplace=True) (cls_module): ModuleList( (0): Linear(in_features=256, out_features=256, bias=False) (1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (2): ELU(alpha=1.0, inplace=True) (3): Linear(in_features=256, out_features=256, bias=False) (4): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (5): ELU(alpha=1.0, inplace=True) (6): Linear(in_features=256, out_features=256, bias=False) (7): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (8): ELU(alpha=1.0, inplace=True) ) (reg_module): ModuleList( (0): Linear(in_features=256, out_features=256, bias=False) (1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (2): ELU(alpha=1.0, inplace=True) (3): Linear(in_features=256, out_features=256, bias=False) (4): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (5): ELU(alpha=1.0, inplace=True) (6): Linear(in_features=256, out_features=256, bias=False) (7): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (8): ELU(alpha=1.0, inplace=True) ) (mask_module): Sequential( (0): Conv2d(256, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=True) (3): Conv2d(256, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=True) (6): Conv2d(256, 256, kernel_size=(7, 7), stride=(1, 1)) ) (ret_roi_layer_1): conv_block( (conv): Sequential( (0): Conv2d(256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=1.0, inplace=True) (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=1.0, inplace=True) ) ) (ret_roi_layer_2): conv_block( (conv): Sequential( (0): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=1.0, inplace=True) (3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=1.0, inplace=True) ) ) (class_logits): Linear(in_features=256, out_features=5, bias=True) (bboxes_delta): Linear(in_features=256, out_features=4, bias=True) ) (4): RCNNHead( (self_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True) ) (inst_interact): DynamicConv( (dynamic_layer): Linear(in_features=256, out_features=32768, bias=True) (norm1): LayerNorm((64,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (activation): ELU(alpha=1.0, inplace=True) (out_layer): Linear(in_features=12544, out_features=256, bias=True) (norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True) ) (linear1): Linear(in_features=256, out_features=2048, bias=True) (dropout): Dropout(p=0.0, inplace=False) (linear2): Linear(in_features=2048, out_features=256, bias=True) (norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (dropout1): Dropout(p=0.0, inplace=False) (dropout2): Dropout(p=0.0, inplace=False) (dropout3): Dropout(p=0.0, inplace=False) (activation): ELU(alpha=1.0, inplace=True) (cls_module): ModuleList( (0): Linear(in_features=256, out_features=256, bias=False) (1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (2): ELU(alpha=1.0, inplace=True) (3): Linear(in_features=256, out_features=256, bias=False) (4): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (5): ELU(alpha=1.0, inplace=True) (6): Linear(in_features=256, out_features=256, bias=False) (7): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (8): ELU(alpha=1.0, inplace=True) ) (reg_module): ModuleList( (0): Linear(in_features=256, out_features=256, bias=False) (1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (2): ELU(alpha=1.0, inplace=True) (3): Linear(in_features=256, out_features=256, bias=False) (4): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (5): ELU(alpha=1.0, inplace=True) (6): Linear(in_features=256, out_features=256, bias=False) (7): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (8): ELU(alpha=1.0, inplace=True) ) (mask_module): Sequential( (0): Conv2d(256, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=True) (3): Conv2d(256, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=True) (6): Conv2d(256, 256, kernel_size=(7, 7), stride=(1, 1)) ) (ret_roi_layer_1): conv_block( (conv): Sequential( (0): Conv2d(256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=1.0, inplace=True) (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=1.0, inplace=True) ) ) (ret_roi_layer_2): conv_block( (conv): Sequential( (0): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=1.0, inplace=True) (3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=1.0, inplace=True) ) ) (class_logits): Linear(in_features=256, out_features=5, bias=True) (bboxes_delta): Linear(in_features=256, out_features=4, bias=True) ) (5): RCNNHead( (self_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True) ) (inst_interact): DynamicConv( (dynamic_layer): Linear(in_features=256, out_features=32768, bias=True) (norm1): LayerNorm((64,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (activation): ELU(alpha=1.0, inplace=True) (out_layer): Linear(in_features=12544, out_features=256, bias=True) (norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True) ) (linear1): Linear(in_features=256, out_features=2048, bias=True) (dropout): Dropout(p=0.0, inplace=False) (linear2): Linear(in_features=2048, out_features=256, bias=True) (norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (dropout1): Dropout(p=0.0, inplace=False) (dropout2): Dropout(p=0.0, inplace=False) (dropout3): Dropout(p=0.0, inplace=False) (activation): ELU(alpha=1.0, inplace=True) (cls_module): ModuleList( (0): Linear(in_features=256, out_features=256, bias=False) (1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (2): ELU(alpha=1.0, inplace=True) (3): Linear(in_features=256, out_features=256, bias=False) (4): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (5): ELU(alpha=1.0, inplace=True) (6): Linear(in_features=256, out_features=256, bias=False) (7): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (8): ELU(alpha=1.0, inplace=True) ) (reg_module): ModuleList( (0): Linear(in_features=256, out_features=256, bias=False) (1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (2): ELU(alpha=1.0, inplace=True) (3): Linear(in_features=256, out_features=256, bias=False) (4): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (5): ELU(alpha=1.0, inplace=True) (6): Linear(in_features=256, out_features=256, bias=False) (7): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (8): ELU(alpha=1.0, inplace=True) ) (mask_module): Sequential( (0): Conv2d(256, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=True) (3): Conv2d(256, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=True) (6): Conv2d(256, 256, kernel_size=(7, 7), stride=(1, 1)) ) (ret_roi_layer_1): conv_block( (conv): Sequential( (0): Conv2d(256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=1.0, inplace=True) (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=1.0, inplace=True) ) ) (ret_roi_layer_2): conv_block( (conv): Sequential( (0): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ELU(alpha=1.0, inplace=True) (3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ELU(alpha=1.0, inplace=True) ) ) (class_logits): Linear(in_features=256, out_features=5, bias=True) (bboxes_delta): Linear(in_features=256, out_features=4, bias=True) ) ) ) (criterion): SetCriterion( (matcher): HungarianMatcher() ) ) [08/25 11:15:53 d2.data.datasets.coco]: Loading /content/drive/MyDrive/imenselmi/ISTR_TRAIN/data/result/train.json takes 6.61 seconds. [08/25 11:15:54 d2.data.datasets.coco]: Loaded 43480 images in COCO format from /content/drive/MyDrive/imenselmi/ISTR_TRAIN/data/result/train.json [08/25 11:15:57 d2.data.build]: Removed 0 images with no usable annotations. 43480 images left. [08/25 11:15:59 d2.data.build]: Distribution of instances among all 5 categories:

category #instances category #instances category #instances
short_sleev.. 18359 long_sleeve.. 14566 long_sleeve.. 10492
shorts 12123 trousers 18227
total 73767

pos_embeddings.weight WARNING [08/25 11:16:04 fvcore.common.checkpoint]: The checkpoint state_dict contains keys that are not used by the model: stem.fc.{bias, weight} [08/25 11:16:04 d2.engine.train_loop]: Starting training from iteration 0 /usr/local/lib/python3.7/dist-packages/fvcore/transforms/transform.py:724: ShapelyDeprecationWarning: Iteration over multi-part geometries is deprecated and will be removed in Shapely 2.0. Use the geoms property to access the constituent parts of a multi-part geometry. for poly in cropped: /usr/local/lib/python3.7/dist-packages/torch/_tensor.py:575: UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at /pytorch/aten/src/ATen/native/BinaryOps.cpp:467.) return torch.floor_divide(self, other) /usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.) return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode) ERROR [08/25 11:16:05 d2.engine.train_loop]: Exception during training: Traceback (most recent call last): File "/usr/local/lib/python3.7/dist-packages/detectron2/engine/train_loop.py", line 149, in train self.run_step() File "/usr/local/lib/python3.7/dist-packages/detectron2/engine/defaults.py", line 494, in run_step self._trainer.run_step() File "/usr/local/lib/python3.7/dist-packages/detectron2/engine/train_loop.py", line 273, in run_step loss_dict = self.model(data) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/content/drive/.shortcut-targets-by-id/190HFmYfsGdKfNWeUiqnpTgh7X3m3GFmF/ISTR_TRAIN/ISTR/projects/ISTR/istr/inseg.py", line 162, in forward src = self.backbone(images.tensor) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/detectron2/modeling/backbone/fpn.py", line 126, in forward bottom_up_features = self.bottom_up(x) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/detectron2/modeling/backbone/resnet.py", line 449, in forward x = stage(x) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/container.py", line 139, in forward input = module(input) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/detectron2/modeling/backbone/resnet.py", line 201, in forward out = self.conv3(out) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/detectron2/layers/wrappers.py", line 110, in forward x = self.norm(x) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/detectron2/layers/batch_norm.py", line 53, in forward return x * scale.to(out_dtype) + bias.to(out_dtype) RuntimeError: CUDA out of memory. Tried to allocate 672.00 MiB (GPU 0; 15.78 GiB total capacity; 13.42 GiB already allocated; 50.75 MiB free; 14.41 GiB reserved in total by PyTorch) [08/25 11:16:05 d2.engine.hooks]: Total training time: 0:00:01 (0:00:00 on hooks) [08/25 11:16:05 d2.utils.events]: iter: 0 lr: N/A max_mem: 14075M Traceback (most recent call last): File "projects/ISTR/train_net.py", line 136, in args=(args,), File "/usr/local/lib/python3.7/dist-packages/detectron2/engine/launch.py", line 82, in launch main_func(*args) File "projects/ISTR/train_net.py", line 124, in main return trainer.train() File "/usr/local/lib/python3.7/dist-packages/detectron2/engine/defaults.py", line 484, in train super().train(self.start_iter, self.max_iter) File "/usr/local/lib/python3.7/dist-packages/detectron2/engine/train_loop.py", line 149, in train self.run_step() File "/usr/local/lib/python3.7/dist-packages/detectron2/engine/defaults.py", line 494, in run_step self._trainer.run_step() File "/usr/local/lib/python3.7/dist-packages/detectron2/engine/train_loop.py", line 273, in run_step loss_dict = self.model(data) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/content/drive/.shortcut-targets-by-id/190HFmYfsGdKfNWeUiqnpTgh7X3m3GFmF/ISTR_TRAIN/ISTR/projects/ISTR/istr/inseg.py", line 162, in forward src = self.backbone(images.tensor) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/detectron2/modeling/backbone/fpn.py", line 126, in forward bottom_up_features = self.bottom_up(x) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/detectron2/modeling/backbone/resnet.py", line 449, in forward x = stage(x) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/container.py", line 139, in forward input = module(input) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/detectron2/modeling/backbone/resnet.py", line 201, in forward out = self.conv3(out) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/detectron2/layers/wrappers.py", line 110, in forward x = self.norm(x) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/detectron2/layers/batch_norm.py", line 53, in forward return x * scale.to(out_dtype) + bias.to(out_dtype) RuntimeError: CUDA out of memory. Tried to allocate 672.00 MiB (GPU 0; 15.78 GiB total capacity; 13.42 GiB already allocated; 50.75 MiB free; 14.41 GiB reserved in total by PyTorch)

aymennturki avatar Aug 25 '22 11:08 aymennturki

Traceback (most recent call last): File "projects/ISTR/train_net.py", line 136, in args=(args,), File "/usr/local/lib/python3.7/dist-packages/detectron2/engine/launch.py", line 82, in launch main_func(*args) File "projects/ISTR/train_net.py", line 124, in main return trainer.train() File "/usr/local/lib/python3.7/dist-packages/detectron2/engine/defaults.py", line 484, in train super().train(self.start_iter, self.max_iter) File "/usr/local/lib/python3.7/dist-packages/detectron2/engine/train_loop.py", line 149, in train self.run_step() File "/usr/local/lib/python3.7/dist-packages/detectron2/engine/defaults.py", line 494, in run_step self._trainer.run_step() File "/usr/local/lib/python3.7/dist-packages/detectron2/engine/train_loop.py", line 273, in run_step loss_dict = self.model(data) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/content/drive/.shortcut-targets-by-id/190HFmYfsGdKfNWeUiqnpTgh7X3m3GFmF/ISTR_TRAIN/ISTR/projects/ISTR/istr/inseg.py", line 162, in forward src = self.backbone(images.tensor) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/detectron2/modeling/backbone/fpn.py", line 126, in forward bottom_up_features = self.bottom_up(x) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/detectron2/modeling/backbone/resnet.py", line 449, in forward x = stage(x) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/container.py", line 139, in forward input = module(input) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/detectron2/modeling/backbone/resnet.py", line 201, in forward out = self.conv3(out) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/detectron2/layers/wrappers.py", line 110, in forward x = self.norm(x) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/detectron2/layers/batch_norm.py", line 53, in forward return x * scale.to(out_dtype) + bias.to(out_dtype) RuntimeError: CUDA out of memory. Tried to allocate 672.00 MiB (GPU 0; 15.78 GiB total capacity; 13.42 GiB already allocated; 50.75 MiB free; 14.41 GiB reserved in total by PyTorch)

aymennturki avatar Aug 25 '22 11:08 aymennturki

how can i fix this issue i trained the code in colab and locally and still the same problem always "CUDA out of memory."

aymennturki avatar Aug 25 '22 11:08 aymennturki

how do you solve it?,my gpu is rtx 2080ti(memory 11G).

guangxuwang avatar Sep 10 '22 14:09 guangxuwang