transformers icon indicating copy to clipboard operation
transformers copied to clipboard

apply_chat_template method not working correctly for llama 3 tokenizer

Open sirluk opened this issue 1 year ago • 4 comments

System Info

  • transformers version: 4.44.1
  • Platform: Linux-4.18.0-553.8.1.el8_10.x86_64-x86_64-with-glibc2.28
  • Python version: 3.10.14
  • Huggingface_hub version: 0.24.5
  • Safetensors version: 0.4.4
  • Accelerate version: 0.33.0
  • Accelerate config: not found
  • PyTorch version (GPU?): 2.4.0+cu121 (True)
  • Tensorflow version (GPU?): not installed (NA)
  • Flax version (CPU?/GPU?/TPU?): not installed (NA)
  • Jax version: not installed
  • JaxLib version: not installed
  • Using distributed or parallel set-up in script?:
  • Using GPU in script?:
  • GPU type: NVIDIA A100-SXM4-80GB

Who can help?

@ArthurZucker I noticed that the apply_chat_template for the PreTrainedTokenizerBase class does not work correctly when return_assistant_tokens_mask=True. We would expect to get back a list of indices for each example where 1 indicates the token is part of an assistant message and 0 otherwise. This is the case for the Llama 2 tokenizer for example. I am sharing a minimal example to reproduce this issue.

Looking deeper into the apply_chat_template method it seems the issue is related to the char_to_token method of the tokenizers.Embedding class and could be related to the fact that the Llama 3 tokenizer was trained with tiktoken as opposed to sentencepiece.

Information

  • [ ] The official example scripts
  • [X] My own modified scripts

Tasks

  • [ ] An officially supported task in the examples folder (such as GLUE/SQuAD, ...)
  • [X] My own task or dataset (give details below)

Reproduction

from transformers import AutoTokenizer
from datasets import load_dataset

dataset_name = "m-a-p/Code-Feedback"

model_name = "meta-llama/Meta-Llama-3.1-8B" # apply_chat_template does not work correctly
#model_name = "meta-llama/Llama-2-7b-hf" # apply_chat_template works correctly

chat_template = """{% if messages[0]['role'] == 'system' %}
    {% set offset = 1 %}
{% else %}
    {% set offset = 0 %}
{% endif %}

{% for message in messages %}
    {% if (message['role'] == 'user') != (loop.index0 % 2 == offset) %}
        {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}
    {% endif %}

    {{ '### ' + message['role'] + ':\n'}}
    {% if (message['role'] == 'assistant') %}
        {% generation %} {{ message['content'] | trim + eos_token }} {% endgeneration %}
    {% else %}
        {{ message['content'] | trim + eos_token }}
    {% endif %}

{% endfor %}

{% if add_generation_prompt %}
    {{ '### ' + 'assistant' + ':\n' }}
{% endif %}"""

tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.chat_template = chat_template
datasets = load_dataset(dataset_name, trust_remote_code=True)

# assistant_mask is all zeros for llama3 tokenizer
chat = tokenizer.apply_chat_template(
    datasets["train"][0]["messages"],
    add_generation_prompt=False,
    return_dict=True,
    tokenize=True,
    return_assistant_tokens_mask=True
)
print("assistant_masks", chat["assistant_masks"])

Executing the steps to get the assistant mask in the apply chat template method shows that the char_to_token method of the tokenizers. Embedding class seems to be not working correctly.

compiled_template = tokenizer._compile_jinja_template(chat_template)
template_kwargs = {**tokenizer.special_tokens_map}
rendered_chat, generation_indices = tokenizer._render_with_assistant_indices(
    compiled_template=compiled_template,
    messages=datasets["train"][0]["messages"],
    tools=[],
    documents=None,
    add_generation_prompt=False,
    **tokenizer.special_tokens_map
)
out = tokenizer(
    rendered_chat,
    padding=False,
    truncation=False,
    max_length=None,
    add_special_tokens=False,
    return_tensors=None
)
first_assistant_start_char, first_assistant_end_char = generation_indices[0]
# returns None for llama3
print("char_to_token", out[0].char_to_token(0, first_assistant_start_char))

Expected behavior

If we assume that the entire chat is 10 characters and the assistant tokens occur at indices 4-6 and 8-9 we would have an expected output that looks like this [0, 0, 0, 1, 1, 1, 0, 1, 1, 0] The actual output for the llama 3 tokenizer is always all 0s [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

sirluk avatar Aug 23 '24 10:08 sirluk

cc @Rocketknight1 our chat template expert

ArthurZucker avatar Aug 27 '24 12:08 ArthurZucker

cc @yonigottesman who wrote the original PR at #30650, do you have any idea what the issue here could be? If you don't have time to investigate this right now, let me know and I'll take over.

Rocketknight1 avatar Aug 27 '24 13:08 Rocketknight1

related to this https://github.com/huggingface/transformers/pull/30650#issuecomment-2279201442

and #1620 If i get time ill try to find a work around for this tokenizer issue

yonigottesman avatar Aug 27 '24 14:08 yonigottesman

Got it - I wouldn't make a workaround in the template itself, because you'll need to remove the workaround again once the underlying tokenizers issue is fixed.

Rocketknight1 avatar Aug 27 '24 14:08 Rocketknight1

for anyone struggling with the same issue atm, I created a temporary workaround for my usecase

class TokenizerCodeFeedbackHacky:

    PROMPT = (
        "Instruction:\nGiven a multi-turn dialogue related to a coding task, your role is to generate the assistant's next response."
        "\n\nDialogue:\n"
    )
    CHAT_TEMPLATE_PATH = "chat_template.jinja"

    def __init__(self, tokenizer_path):
        self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
        self.tokenized_prompt = self.tokenizer(self.PROMPT, add_special_tokens=False, return_attention_mask=False)["input_ids"]
        self.tokenized_prompt_len = len(self.tokenized_prompt)

        chat_template = open(self.CHAT_TEMPLATE_PATH).read()
        self.tokenizer.chat_template = chat_template
        self.chat_template_header = "### {role}:\n" #.format(role="assistant")

    def __call__(self, examples):
        chats = self.tokenizer.apply_chat_template(
            examples["messages"],
            add_generation_prompt=False,
            return_dict=False,
            tokenize=False
        )
        chats_tokenized = self.tokenizer(chats, add_special_tokens=False, return_attention_mask=False, return_length=True, return_offsets_mapping=True)
        assistant_mask = []
        for i in range(len(chats)):
            s, _ = zip(*chats_tokenized[i].offsets)
            s = torch.tensor(s)
            assistant_starts = [x.end()+1 for x in re.finditer(self.chat_template_header.format(role="assistant"), chats[i])]
            assistant_ends = [x.start()-1 for x in re.finditer(self.chat_template_header.format(role="user"), chats[i])]
            assistant_ends = assistant_ends[1:] + [len(chats[i])]
            assistant_start_ids, assistant_end_ids = [], []
            for start, end in zip(assistant_starts, assistant_ends):
                assistant_start_ids.append((s > start).long().argmax().item() - 1)
                assistant_end_ids.append((s > end).long().argmax().item() - 1)
            assistant_end_ids = assistant_end_ids[:-1] + [chats_tokenized["length"][i]-1]
            mask = [0] * chats_tokenized["length"][i]
            for start_id, end_id in zip(assistant_start_ids, assistant_end_ids):
                mask[start_id:end_id] = [1] * (end_id-start_id)
            assistant_mask.append(mask)
        input_ids = [self.tokenized_prompt + x for x in chats_tokenized["input_ids"]]
        assistant_mask = [[0] * self.tokenized_prompt_len + x for x in assistant_mask]
        input_length = [x + self.tokenized_prompt_len for x in chats_tokenized["length"]]
        return {"input_ids": input_ids, "assistant_mask": assistant_mask, 'input_length': input_length}

sirluk avatar Sep 08 '24 20:09 sirluk

This issue has been automatically marked as stale because it has not had recent activity. If you think this still needs to be addressed please comment on this thread.

Please note that issues that do not follow the contributing guidelines are likely to be ignored.

github-actions[bot] avatar Oct 03 '24 08:10 github-actions[bot]

Closing as the issue was fixed by #1640 !

ArthurZucker avatar Oct 03 '24 15:10 ArthurZucker

Hi @ArthurZucker , could you point to the commit/PR in which it was fixed?

0seba avatar Oct 03 '24 17:10 0seba

oups sorry it's a fix in tokenizers

ArthurZucker avatar Oct 04 '24 17:10 ArthurZucker

Updated https://github.com/huggingface/tokenizers/pull/1640

ArthurZucker avatar Oct 04 '24 17:10 ArthurZucker

Did anyone check that this actually works?

jenkspt avatar Feb 26 '25 20:02 jenkspt