peft icon indicating copy to clipboard operation
peft copied to clipboard

TypeError: unsupported operand type(s) for *: 'Parameter' and 'NoneType'

Open misonsky opened this issue 1 year ago • 1 comments

System Info

Adalora

def update_ipt(self, model):
    # Update the sensitivity and uncertainty for every weight
    for n, p in model.named_parameters():
        if "lora_" in n and self.adapter_name in n:
            if n not in self.ipt:
                self.ipt[n] = torch.zeros_like(p)
                self.exp_avg_ipt[n] = torch.zeros_like(p)
                self.exp_avg_unc[n] = torch.zeros_like(p)
            with torch.no_grad():
                self.ipt[n] = (p * p.grad).abs().detach()
                # Sensitivity smoothing
                self.exp_avg_ipt[n] = self.beta1 * self.exp_avg_ipt[n] + (1 - self.beta1) * self.ipt[n]
                # Uncertainty quantification
                self.exp_avg_unc[n] = (
                    self.beta2 * self.exp_avg_unc[n] + (1 - self.beta2) * (self.ipt[n] - self.exp_avg_ipt[n]).abs()
                )

When using adalora peft, the classification header layer includes:

base_model.model.classifier.original_module.dense.base_layer.weight
base_model.model.classifier.original_module.dense.base_layer.bias
base_model.model.classifier.original_module.dense.lora_A.default
base_model.model.classifier.original_module.dense.lora_B.default
base_model.model.classifier.original_module.dense.lora_E.default
base_model.model.classifier.original_module.dense.ranknum.default
base_model.model.classifier.original_module.out_proj.weight
base_model.model.classifier.original_module.out_proj.bias
base_model.model.classifier.modules_to_save.default.dense.base_layer.weight
base_model.model.classifier.modules_to_save.default.dense.base_layer.bias
base_model.model.classifier.modules_to_save.default.dense.lora_A.default
base_model.model.classifier.modules_to_save.default.dense.lora_B.default
base_model.model.classifier.modules_to_save.default.dense.lora_E.default
base_model.model.classifier.modules_to_save.default.dense.ranknum.default
base_model.model.classifier.modules_to_save.default.out_proj.weight
base_model.model.classifier.modules_to_save.default.out_proj.bias

But for layers

base_model.model.classifier.original_module.dense.lora_A.default
base_model.model.classifier.original_module.dense.lora_B.default
base_model.model.classifier.original_module.dense.lora_E.default

after checking, there is no gradient. In other words, the requires_grad attribute is False, but the inclulde "lora_" string. I think gradient checking should be added to the update_ipt function.

This error occurs when calling model.update_and_allocate(global_step).

Who can help?

No response

Information

  • [ ] The official example scripts
  • [ ] My own modified scripts

Tasks

  • [ ] An officially supported task in the examples folder
  • [ ] My own task or dataset (give details below)

Reproduction

This error occurs when calling model.update_and_allocate(global_step).

the config is:

peft_config = AdaLoraConfig(
            peft_type="ADALORA", 
            task_type="SEQ_CLS", 
            r=rank, 
            lora_alpha=32, 
            lora_dropout=0.01)

the model is RoBERTa.

Expected behavior

I think gradient checking should be added to the update_ipt function.

def update_ipt(self, model):
    # Update the sensitivity and uncertainty for every weight
    for n, p in model.named_parameters():
        if not p.requires_grad: continue
        if "lora_" in n and self.adapter_name in n:
            if n not in self.ipt:
                self.ipt[n] = torch.zeros_like(p)
                self.exp_avg_ipt[n] = torch.zeros_like(p)
                self.exp_avg_unc[n] = torch.zeros_like(p)
            with torch.no_grad():
                self.ipt[n] = (p * p.grad).abs().detach()
                # Sensitivity smoothing
                self.exp_avg_ipt[n] = self.beta1 * self.exp_avg_ipt[n] + (1 - self.beta1) * self.ipt[n]
                # Uncertainty quantification
                self.exp_avg_unc[n] = (
                    self.beta2 * self.exp_avg_unc[n] + (1 - self.beta2) * (self.ipt[n] - self.exp_avg_ipt[n]).abs()
                )

misonsky avatar May 09 '24 19:05 misonsky

Thanks for reporting. Could you please paste the full error message? Also, do you have a reproducer or are you using one of the examples from PEFT?

BenjaminBossan avatar May 13 '24 12:05 BenjaminBossan

This issue has been automatically marked as stale because it has not had recent activity. If you think this still needs to be addressed please comment on this thread.

github-actions[bot] avatar Jun 09 '24 15:06 github-actions[bot]