peft
peft copied to clipboard
TypeError: unsupported operand type(s) for *: 'Parameter' and 'NoneType'
System Info
Adalora
def update_ipt(self, model):
# Update the sensitivity and uncertainty for every weight
for n, p in model.named_parameters():
if "lora_" in n and self.adapter_name in n:
if n not in self.ipt:
self.ipt[n] = torch.zeros_like(p)
self.exp_avg_ipt[n] = torch.zeros_like(p)
self.exp_avg_unc[n] = torch.zeros_like(p)
with torch.no_grad():
self.ipt[n] = (p * p.grad).abs().detach()
# Sensitivity smoothing
self.exp_avg_ipt[n] = self.beta1 * self.exp_avg_ipt[n] + (1 - self.beta1) * self.ipt[n]
# Uncertainty quantification
self.exp_avg_unc[n] = (
self.beta2 * self.exp_avg_unc[n] + (1 - self.beta2) * (self.ipt[n] - self.exp_avg_ipt[n]).abs()
)
When using adalora peft, the classification header layer includes:
base_model.model.classifier.original_module.dense.base_layer.weight
base_model.model.classifier.original_module.dense.base_layer.bias
base_model.model.classifier.original_module.dense.lora_A.default
base_model.model.classifier.original_module.dense.lora_B.default
base_model.model.classifier.original_module.dense.lora_E.default
base_model.model.classifier.original_module.dense.ranknum.default
base_model.model.classifier.original_module.out_proj.weight
base_model.model.classifier.original_module.out_proj.bias
base_model.model.classifier.modules_to_save.default.dense.base_layer.weight
base_model.model.classifier.modules_to_save.default.dense.base_layer.bias
base_model.model.classifier.modules_to_save.default.dense.lora_A.default
base_model.model.classifier.modules_to_save.default.dense.lora_B.default
base_model.model.classifier.modules_to_save.default.dense.lora_E.default
base_model.model.classifier.modules_to_save.default.dense.ranknum.default
base_model.model.classifier.modules_to_save.default.out_proj.weight
base_model.model.classifier.modules_to_save.default.out_proj.bias
But for layers
base_model.model.classifier.original_module.dense.lora_A.default
base_model.model.classifier.original_module.dense.lora_B.default
base_model.model.classifier.original_module.dense.lora_E.default
after checking, there is no gradient. In other words, the requires_grad attribute is False, but the inclulde "lora_" string. I think gradient checking should be added to the update_ipt function.
This error occurs when calling model.update_and_allocate(global_step).
Who can help?
No response
Information
- [ ] The official example scripts
- [ ] My own modified scripts
Tasks
- [ ] An officially supported task in the
examplesfolder - [ ] My own task or dataset (give details below)
Reproduction
This error occurs when calling model.update_and_allocate(global_step).
the config is:
peft_config = AdaLoraConfig(
peft_type="ADALORA",
task_type="SEQ_CLS",
r=rank,
lora_alpha=32,
lora_dropout=0.01)
the model is RoBERTa.
Expected behavior
I think gradient checking should be added to the update_ipt function.
def update_ipt(self, model):
# Update the sensitivity and uncertainty for every weight
for n, p in model.named_parameters():
if not p.requires_grad: continue
if "lora_" in n and self.adapter_name in n:
if n not in self.ipt:
self.ipt[n] = torch.zeros_like(p)
self.exp_avg_ipt[n] = torch.zeros_like(p)
self.exp_avg_unc[n] = torch.zeros_like(p)
with torch.no_grad():
self.ipt[n] = (p * p.grad).abs().detach()
# Sensitivity smoothing
self.exp_avg_ipt[n] = self.beta1 * self.exp_avg_ipt[n] + (1 - self.beta1) * self.ipt[n]
# Uncertainty quantification
self.exp_avg_unc[n] = (
self.beta2 * self.exp_avg_unc[n] + (1 - self.beta2) * (self.ipt[n] - self.exp_avg_ipt[n]).abs()
)
Thanks for reporting. Could you please paste the full error message? Also, do you have a reproducer or are you using one of the examples from PEFT?
This issue has been automatically marked as stale because it has not had recent activity. If you think this still needs to be addressed please comment on this thread.