Error when setting num_single_layers=0 while training flux-controlnet on a multi-GPU server using a single GPU
Describe the bug
While training flux-controlnet on a multi-GPU server and restricting the training to a single GPU, setting num_single_layers=0 leads to an error:
[rank0]: Parameter indices which did not receive grad for rank 0: 64 65 72 73 74 75
Reproduction
accelerate launch --gpu_ids='0,' --num_processes=1 --num_machines=1 --main_process_port 28700 train_controlnet_flux.py \ --pretrained_model_name_or_path="black-forest-labs/FLUX.1-schnell" \ --dataset_name="lucataco/fill1k" \ --conditioning_image_column=conditioning_image \ --image_column=image \ --caption_column=text \ --output_dir="logs" \ --mixed_precision="bf16" \ --resolution=512 \ --learning_rate=1e-5 \ --max_train_steps=15000 \ --validation_steps=100 \ --checkpointing_steps=200 \ --validation_image "./example_images/conditioning_image_1.png" "./example_images/conditioning_image_2.png" \ --validation_prompt "red circle with blue background" "cyan circle with brown floral background" \ --train_batch_size=1 \ --gradient_accumulation_steps=1 \ --report_to="tensorboard" \ --num_double_layers=2 \ --num_single_layers=0 \ --seed=42 \ --enable_model_cpu_offload \ --use_8bit_adam \ --use_adafactor \ --gradient_checkpointing \
Logs
[rank0]: RuntimeError: Expected to have finished reduction in the prior iteration before starting a new one. This error indicates that your module has parameters that were not used in producing loss. You can enable unused parameter detection by passing the keyword argument `find_unused_parameters=True` to `torch.nn.parallel.DistributedDataParallel`, and by
[rank0]: making sure all `forward` function outputs participate in calculating loss.
[rank0]: If you already have done the above, then the distributed data parallel module wasn't able to locate the output tensors in the return value of your module's `forward` function. Please include the loss function and the structure of the return value of `forward` of your module when reporting this issue (e.g. list, dict, iterable).
[rank0]: Parameter indices which did not receive grad for rank 0: 64 65 72 73 74 75
[rank0]: In addition, you can set the environment variable TORCH_DISTRIBUTED_DEBUG to either INFO or DETAIL to print out information about which particular parameters did not receive gradient on this rank as part of this error
System Info
- 🤗 Diffusers version: 0.31.0.dev0
- Platform: Linux-5.14.0-427.33.1.el9_4.x86_64-x86_64-with-glibc2.34
- Running on Google Colab?: No
- Python version: 3.12.4
- PyTorch version (GPU?): 2.4.1+cu121 (True)
- Flax version (CPU?/GPU?/TPU?): not installed (NA)
- Jax version: not installed
- JaxLib version: not installed
- Huggingface_hub version: 0.24.7
- Transformers version: 4.45.0
- Accelerate version: 0.33.0
- PEFT version: 0.12.0
- Bitsandbytes version: 0.44.1
- Safetensors version: 0.4.4
- xFormers version: 0.0.28
- Accelerator: NVIDIA RTX A6000, 49140 MiB NVIDIA RTX A6000, 49140 MiB NVIDIA RTX A6000, 49140 MiB
- Using GPU in script?:
- Using distributed or parallel set-up in script?: Yes
Who can help?
@sayakpaul
I solve it by:
flux_controlnet.train()
if args.num_single_layers == 0:
flux_controlnet.transformer_blocks[-1].attn.to_add_out.requires_grad_(False)
flux_controlnet.transformer_blocks[-1].ff_context.requires_grad_(False)
...
# params_to_optimize = flux_controlnet.parameters()
params_to_optimize = [param for param in flux_controlnet.parameters() if param.requires_grad]
but I am not sure if my modifications are logically correct
Cc: @PromeAIpro
I met the same problem.
I solve it by:↳
flux_controlnet.train() if args.num_single_layers == 0: flux_controlnet.transformer_blocks[-1].attn.to_add_out.requires_grad_(False) flux_controlnet.transformer_blocks[-1].ff_context.requires_grad_(False) ... # params_to_optimize = flux_controlnet.parameters() params_to_optimize = [param for param in flux_controlnet.parameters() if param.requires_grad]but I am not sure if my modifications are logically correct↳
I wonder why you change this two modules, and If the last transformer_blocks's requires_grad is False, can the gradient be backward to the former layers? Thanks!
if args.num_single_layers == 0:
flux_controlnet.transformer_blocks[-1].attn.to_add_out.requires_grad_(False)
flux_controlnet.transformer_blocks[-1].ff_context.requires_grad_(False)
I solved it by using deepspeed, zero_stage:2
I solve it by:↳
flux_controlnet.train() if args.num_single_layers == 0: flux_controlnet.transformer_blocks[-1].attn.to_add_out.requires_grad_(False) flux_controlnet.transformer_blocks[-1].ff_context.requires_grad_(False) ... # params_to_optimize = flux_controlnet.parameters() params_to_optimize = [param for param in flux_controlnet.parameters() if param.requires_grad]but I am not sure if my modifications are logically correct↳
I wonder why you change this two modules, and If the last transformer_blocks's requires_grad is False, can the gradient be backward to the former layers? Thanks!
if args.num_single_layers == 0: flux_controlnet.transformer_blocks[-1].attn.to_add_out.requires_grad_(False) flux_controlnet.transformer_blocks[-1].ff_context.requires_grad_(False)
In double block, there is text attn and image attn, I just remove the grad of text attn.
Hi, do you meet the similar error when training the controlnet_sd3?
This issue has been automatically marked as stale because it has not had recent activity. If you think this still needs to be addressed please comment on this thread.
Please note that issues that do not follow the contributing guidelines are likely to be ignored.