datasets icon indicating copy to clipboard operation
datasets copied to clipboard

Change default compression argument for JsonDatasetWriter

Open Rexhaif opened this issue 1 year ago • 1 comments

Change default compression type from None to "infer", to align with pandas' defaults.

Documentation asks the user to supply to_json_kwargs with arguments suitable for pandas' to_json method. At the same time, while pandas' by default uses "infer" for compression, datasets enforce None as default. This, likely, confuses user, as they expect the same behaviour, i.e they expect that if they name their output file as "dataset.jsonl.zst" then the compression would be inferred as "zstd" and file will be compressed before writing.

Moreover, while it is probably outside of the scope of this pull request, compression argument needs to be capable of taking dict as input (along with str), as it does in pandas, in order to allow user to specify compression parameters. Current implementation will likely fail with NotImplementedError, as it expects either None or str specifying compression algo.

Rexhaif avatar Feb 11 '24 23:02 Rexhaif

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.

Can someone check this out?

Rexhaif avatar Feb 22 '24 23:02 Rexhaif

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005008 / 0.011353 (-0.006345) 0.003267 / 0.011008 (-0.007741) 0.064140 / 0.038508 (0.025632) 0.027419 / 0.023109 (0.004309) 0.246692 / 0.275898 (-0.029206) 0.271303 / 0.323480 (-0.052177) 0.004127 / 0.007986 (-0.003859) 0.002698 / 0.004328 (-0.001631) 0.050415 / 0.004250 (0.046165) 0.040323 / 0.037052 (0.003271) 0.265738 / 0.258489 (0.007249) 0.291556 / 0.293841 (-0.002285) 0.027924 / 0.128546 (-0.100622) 0.010206 / 0.075646 (-0.065441) 0.207106 / 0.419271 (-0.212165) 0.036087 / 0.043533 (-0.007446) 0.250412 / 0.255139 (-0.004727) 0.269014 / 0.283200 (-0.014186) 0.018102 / 0.141683 (-0.123581) 1.135137 / 1.452155 (-0.317018) 1.177718 / 1.492716 (-0.314998)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.095557 / 0.018006 (0.077550) 0.306235 / 0.000490 (0.305745) 0.000214 / 0.000200 (0.000014) 0.000044 / 0.000054 (-0.000011)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018217 / 0.037411 (-0.019194) 0.060993 / 0.014526 (0.046467) 0.072748 / 0.176557 (-0.103808) 0.119357 / 0.737135 (-0.617778) 0.073719 / 0.296338 (-0.222619)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.295924 / 0.215209 (0.080715) 2.901071 / 2.077655 (0.823417) 1.497316 / 1.504120 (-0.006804) 1.371232 / 1.541195 (-0.169962) 1.395643 / 1.468490 (-0.072847) 0.577548 / 4.584777 (-4.007229) 2.383813 / 3.745712 (-1.361899) 2.764451 / 5.269862 (-2.505411) 1.733074 / 4.565676 (-2.832602) 0.063730 / 0.424275 (-0.360545) 0.004933 / 0.007607 (-0.002674) 0.347135 / 0.226044 (0.121090) 3.390814 / 2.268929 (1.121885) 1.849454 / 55.444624 (-53.595170) 1.561801 / 6.876477 (-5.314675) 1.587818 / 2.142072 (-0.554254) 0.652061 / 4.805227 (-4.153166) 0.117195 / 6.500664 (-6.383469) 0.041922 / 0.075469 (-0.033548)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.949050 / 1.841788 (-0.892738) 11.353664 / 8.074308 (3.279355) 9.261581 / 10.191392 (-0.929811) 0.140374 / 0.680424 (-0.540050) 0.014254 / 0.534201 (-0.519946) 0.288124 / 0.579283 (-0.291159) 0.262888 / 0.434364 (-0.171476) 0.330774 / 0.540337 (-0.209564) 0.444777 / 1.386936 (-0.942159)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005162 / 0.011353 (-0.006191) 0.003418 / 0.011008 (-0.007591) 0.049764 / 0.038508 (0.011256) 0.029336 / 0.023109 (0.006226) 0.278570 / 0.275898 (0.002672) 0.300676 / 0.323480 (-0.022804) 0.004292 / 0.007986 (-0.003694) 0.002745 / 0.004328 (-0.001584) 0.049194 / 0.004250 (0.044943) 0.044036 / 0.037052 (0.006984) 0.299258 / 0.258489 (0.040769) 0.324451 / 0.293841 (0.030610) 0.029777 / 0.128546 (-0.098769) 0.010426 / 0.075646 (-0.065221) 0.057267 / 0.419271 (-0.362004) 0.051276 / 0.043533 (0.007743) 0.278012 / 0.255139 (0.022873) 0.297099 / 0.283200 (0.013899) 0.018340 / 0.141683 (-0.123343) 1.179255 / 1.452155 (-0.272899) 1.231536 / 1.492716 (-0.261180)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.092546 / 0.018006 (0.074540) 0.299959 / 0.000490 (0.299469) 0.000220 / 0.000200 (0.000020) 0.000043 / 0.000054 (-0.000012)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021657 / 0.037411 (-0.015755) 0.075440 / 0.014526 (0.060914) 0.086246 / 0.176557 (-0.090310) 0.126511 / 0.737135 (-0.610624) 0.091303 / 0.296338 (-0.205036)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.294775 / 0.215209 (0.079566) 2.868973 / 2.077655 (0.791319) 1.666971 / 1.504120 (0.162851) 1.545680 / 1.541195 (0.004486) 1.559983 / 1.468490 (0.091493) 0.572191 / 4.584777 (-4.012586) 2.429317 / 3.745712 (-1.316395) 2.673334 / 5.269862 (-2.596527) 1.758114 / 4.565676 (-2.807563) 0.063766 / 0.424275 (-0.360509) 0.005070 / 0.007607 (-0.002537) 0.345488 / 0.226044 (0.119443) 3.464525 / 2.268929 (1.195596) 1.975717 / 55.444624 (-53.468908) 1.686671 / 6.876477 (-5.189806) 1.825434 / 2.142072 (-0.316638) 0.655853 / 4.805227 (-4.149374) 0.116372 / 6.500664 (-6.384292) 0.040647 / 0.075469 (-0.034822)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.014080 / 1.841788 (-0.827707) 12.038496 / 8.074308 (3.964188) 10.354536 / 10.191392 (0.163144) 0.130285 / 0.680424 (-0.550139) 0.015514 / 0.534201 (-0.518687) 0.284743 / 0.579283 (-0.294540) 0.280275 / 0.434364 (-0.154088) 0.321175 / 0.540337 (-0.219162) 0.425840 / 1.386936 (-0.961096)

github-actions[bot] avatar Mar 01 '24 17:03 github-actions[bot]