ARML icon indicating copy to clipboard operation
ARML copied to clipboard

Question about the performance of ARML

Open peterdarkdarkgogo opened this issue 3 years ago • 1 comments

I tried to run the ARML training and inference code, and my result on plainmulti dataset seems not match with the result on paper.

In my experiment, the acc of plainmulti dataset 0 to 3 are 0.56, 0.33, 0.55, 0.43, which are quite different from the paper result, which are 62:33 ± 1:47% 35:65 ± 1:40% 58:56 ± 1:41% 44:82 ± 1:38. I used the trained ARML model49999 as the inference model.

>>> arr = [0.20019874, 0.5173999 , 0.57059884, 0.5827988 , 0.5869986 ,
...        0.5877987 , 0.5879988 , 0.5873988 , 0.5883988 , 0.58859867,
...        0.5877988 , 0.5869989 , 0.58699894, 0.58679897, 0.5875988 ,
...        0.5877989 , 0.5889989 , 0.5881989 , 0.5885988 , 0.5877989 ,
...        0.58819896]
>>> sum(arr) / len(arr)
0.564951258095238
>>> arr = [0.19799837, 0.30459967, 0.32159966, 0.34019986, 0.33839968,
...        0.33979967, 0.33959967, 0.3409997 , 0.34059966, 0.3403997 ,
...        0.33979973, 0.3399998 , 0.3399998 , 0.34019983, 0.33979982,
...        0.34079984, 0.34119982, 0.34099984, 0.34079984, 0.34079984,
...        0.34119982]
>>> sum(arr) / len(arr)
0.33094255333333333
>>> arr = [0.18879882, 0.48420003, 0.54219973, 0.5623991 , 0.572999  ,
...        0.5753989 , 0.5757989 , 0.575399  , 0.57559896, 0.5773989 ,
...        0.57719886, 0.57699883, 0.5773987 , 0.5785988 , 0.5781988 ,
...        0.57819885, 0.57819885, 0.5785988 , 0.5781988 , 0.57839876,
...        0.57819873]
>>> sum(arr) / len(arr)
0.5518275295238095
>>> arr = [0.19559856, 0.38499972, 0.41160023, 0.44420016, 0.4516001 ,
...        0.45320007, 0.45400003, 0.45319998, 0.45199996, 0.4528    ,
...        0.4526    , 0.452     , 0.4526    , 0.45340002, 0.4534    ,
...        0.45399997, 0.45419994, 0.45379996, 0.45360002, 0.45319998,
...        0.453     ]
>>> sum(arr) / len(arr)
0.4351904142857143

Would you mind sharing some advice ? Thank you. @huaxiuyao

peterdarkdarkgogo avatar Dec 14 '21 16:12 peterdarkdarkgogo

HI @huaxiuyao I am getting very similar results. The validation results for CUB: Mean validation accuracy/loss, stddev, and confidence intervals (array([0.19819896, 0.44620022, 0.5184002 , 0.53419966, 0.53259957, 0.5337997 , 0.53319967, 0.5355997 , 0.5349997 , 0.5359998 , 0.53719974, 0.5373997 , 0.5379998 , 0.5375998 , 0.53719985, 0.5369998 , 0.5369998 , 0.5377998 , 0.53819984, 0.53859985, 0.5377998 ], dtype=float32), array([0.16768113, 0.2099184 , 0.23677287, 0.23330276, 0.23472783, 0.23181376, 0.23034328, 0.2305049 , 0.23077096, 0.2309638 , 0.23146595, 0.23125988, 0.23116252, 0.23174632, 0.23129322, 0.2308043 , 0.23063095, 0.23050198, 0.23095587, 0.23054318, 0.23050196], dtype=float32), array([0.01039298, 0.01301088, 0.01467534, 0.01446026, 0.01454858, 0.01436797, 0.01427682, 0.01428684, 0.01430333, 0.01431528, 0.01434641, 0.01433364, 0.0143276 , 0.01436379, 0.0143357 , 0.0143054 , 0.01429466, 0.01428666, 0.01431479, 0.01428921, 0.01428666], dtype=float32)) Can you please tell us how to calculate the actual accuracy, from the above

prantikhowlader avatar Apr 11 '22 01:04 prantikhowlader