MVOS-OL
MVOS-OL copied to clipboard
Online Meta Adaptation for Fast Video Object Segmentation
Online Meta Adaptation for Fast Video Object Segmentation
Introduction
This is the implementation of our PAMI work Online Meta Adaptation for Fast Video Object Segmentation
.
Installation:
-
Clone the MVOS repository
git clone https://github.com/huaxinxiao/MVOS-OL.git
-
Install - if necessary - the required dependencies:
- Python (tested with Anaconda 2.7 and 3.6)
- PyTorch (
conda install pytorch torchvision -c pytorch
- tested with PyTorch 0.3, CUDA 8.0)
Useage:
-
Download and softlink the DAVIS datasets.
ls -s /your/davis/JPEGImages/ ./dataset/davis/
For DAVIS-17, we split the multiple instances from the same video and name the file as
/Annotations/480p_split
.ls -s /your/davis/Annotations/ ./dataset/davis/
-
Download the pre-trained segmentation and meta models and put them under
./snapshots/
.Pre-trained base segmentation model
-
Run the demo script.
demo_mvos_davis1X.py
shows the process of meta adaptation on the first frame.demo_mvos_ol_davis1X.py
shows the process of online meta adaptation.
Results:
Citiation:
@article{xiao2018online,
title={Online Meta Adaptation for Fast Video Object Segmentation},
author={Huaxin Xiao and Bingyi Kang and Yu Liu and Maojun Zhang and Jiashi Feng},
journal={{IEEE} Trans. Pattern Anal. Mach. Intell.},
year={2018}
}