GeneralizationAndStabilityInGANs icon indicating copy to clipboard operation
GeneralizationAndStabilityInGANs copied to clipboard

Code for synthetic experiments of paper "Improving Generalization and Stability of GANs"

Improving Generalization And Stability of GANs

Code for paper "Improving Generalization And Stability of GANs". If you use this code please consider citing our paper.

@inproceedings{
thanh-tung2018improving,
title={Improving Generalization and Stability of Generative Adversarial Networks},
author={Hoang Thanh-Tung and Truyen Tran and Svetha Venkatesh},
booktitle={International Conference on Learning Representations},
year={2019},
url={https://openreview.net/forum?id=ByxPYjC5KQ},
}

Requirements

  • Pytorch 0.4.1

Usage

usage: GradientPenaltiesGAN.py [-h] [--nhidden NHIDDEN] [--gnlayers GNLAYERS]
                               [--dnlayers DNLAYERS] [--niters NITERS]
                               [--device DEVICE] [--batch_size BATCH_SIZE]
                               [--center CENTER] [--LAMBDA LAMBDA]
                               [--alpha ALPHA] [--lrg LRG] [--lrd LRD]
                               [--dataset DATASET] [--scale SCALE]
                               [--loss LOSS] [--optim OPTIM]
                               [--ncritic NCRITIC]

optional arguments:
  -h, --help            show this help message and exit
  --nhidden NHIDDEN     number of hidden neurons
  --gnlayers GNLAYERS   number of hidden layers in generator
  --dnlayers DNLAYERS   number of hidden layers in discriminator/critic
  --niters NITERS       number of iterations
  --device DEVICE       id of the gpu. -1 for cpu
  --batch_size BATCH_SIZE
                        batch size
  --center CENTER       gradpen center
  --LAMBDA LAMBDA       gradpen weight
  --alpha ALPHA         interpolation weight between reals and fakes
  --lrg LRG             lr for G
  --lrd LRD             lr for D
  --dataset DATASET     dataset to use: 8Gaussians | 25Gaussians | swissroll
  --scale SCALE         data scaling
  --loss LOSS           gan | wgan
  --optim OPTIM         optimizer to use
  --ncritic NCRITIC     critic iters / generator iter

For ImageNet experiment, we used the code by Mescheder et al. https://github.com/LMescheder/GAN_stability.