CResMD
CResMD copied to clipboard
question about "zero point " problem with the pretrained global scale weights
Hi,
I use your pretrained model 2D_modulation.pth
to test 2D problem.
I load the weights and find the global scale conv weights as follows, which is corresponding to the "zero point " problem:
print(list(model.children())[0].weight)
Parameter containing:
tensor([[ 1.1378e-05, -8.9791e-05],
[-5.6083e-05, 6.1680e-05],
[-4.5423e-05, 3.8486e-05]], requires_grad=True)
print(list(model.children())[0].bias)
Parameter containing:
tensor([-0.0140, 0.0141, 0.0138], requires_grad=True)
If the blur & denoise 2D problem cond vector to "zero point" [0,0], and the weight will be useless, the bias dominate. And the bias does not be 0.
So, what's the problem?
Why do you just set the global scale linear bias=False
?