Tacotron2-Wavenet-Korean-TTS
Tacotron2-Wavenet-Korean-TTS copied to clipboard
Reshape error
train_tacotron2.py 는 문제가 없습니다만 train_vocoder.py 에서 다른 dataset (KSS) 을 추가하여 사용하였을때 reshape 오류가 발생하는데 sample_size 를 조정하여도 해결되지 않네요.. (only moon + son 에서는 문제없음) 이 현상은 tacotron1 repo 에서도 동일하게 발생을 합니다.
Exiting due to exception: Input to reshape is a tensor with 32 values, but the requested shape has 64 [[Node: wavenet/Reshape = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/device:GPU:0"](wavenet/embedding_lookup, optimizer/gradients/wavenet/dilated_stack/layer19/dilation_layer/gc_filter/conv1d/ExpandDims_grad/Shape)]] [[Node: optimizer/gradients/wavenet/postprocessing/conv1d/conv1d/Squeeze_grad/Shape/_599 = _Recvclient_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_5739_...grad/Shape", tensor_type=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"]]
Caused by op 'wavenet/Reshape', defined at:
File "train_vocoder.py", line 315, in
InvalidArgumentError (see above for traceback): Input to reshape is a tensor with 32 values, but the requested shape has 64 [[Node: wavenet/Reshape = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/device:GPU:0"](wavenet/embedding_lookup, optimizer/gradients/wavenet/dilated_stack/layer19/dilation_layer/gc_filter/conv1d/ExpandDims_grad/Shape)]] [[Node: optimizer/gradients/wavenet/postprocessing/conv1d/conv1d/Squeeze_grad/Shape/_599 = _Recvclient_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_5739_...grad/Shape", tensor_type=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"]]
Traceback (most recent call last): File "/root/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1322, in _do_call return fn(*args) File "/root/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1307, in _run_fn options, feed_dict, fetch_list, target_list, run_metadata) File "/root/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1409, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.InvalidArgumentError: Input to reshape is a tensor with 32 values, but the requested shape has 64 [[Node: wavenet/Reshape = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/device:GPU:0"](wavenet/embedding_lookup, optimizer/gradients/wavenet/dilated_stack/layer19/dilation_layer/gc_filter/conv1d/ExpandDims_grad/Shape)]] [[Node: optimizer/gradients/wavenet/postprocessing/conv1d/conv1d/Squeeze_grad/Shape/_599 = _Recvclient_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_5739_...grad/Shape", tensor_type=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last): File "train_vocoder.py", line 287, in main step, loss_value, _ = sess.run([global_step,net.loss, net.optimize]) File "/root/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 900, in run run_metadata_ptr) File "/root/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1135, in _run feed_dict_tensor, options, run_metadata) File "/root/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1316, in _do_run run_metadata) File "/root/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1335, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.InvalidArgumentError: Input to reshape is a tensor with 32 values, but the requested shape has 64 [[Node: wavenet/Reshape = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/device:GPU:0"](wavenet/embedding_lookup, optimizer/gradients/wavenet/dilated_stack/layer19/dilation_layer/gc_filter/conv1d/ExpandDims_grad/Shape)]] [[Node: optimizer/gradients/wavenet/postprocessing/conv1d/conv1d/Squeeze_grad/Shape/_599 = _Recvclient_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_5739_...grad/Shape", tensor_type=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"]]
Caused by op 'wavenet/Reshape', defined at:
File "train_vocoder.py", line 315, in
InvalidArgumentError (see above for traceback): Input to reshape is a tensor with 32 values, but the requested shape has 64 [[Node: wavenet/Reshape = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/device:GPU:0"](wavenet/embedding_lookup, optimizer/gradients/wavenet/dilated_stack/layer19/dilation_layer/gc_filter/conv1d/ExpandDims_grad/Shape)]] [[Node: optimizer/gradients/wavenet/postprocessing/conv1d/conv1d/Squeeze_grad/Shape/_599 = _Recvclient_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_5739_...grad/Shape", tensor_type=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"]]
NoneType: None Done
KSS dataset으로부터 mel spectrogram이 잘 생성되었는지 확인해 보세요.