LLaVA
LLaVA copied to clipboard
[Usage] How can I change the language model into Qwen-7B?
Describe the issue
I want to change the LLM into Qwen,and I write a model file according to llava_llama.py:
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers import AutoConfig, AutoModelForCausalLM, \
LlamaConfig, LlamaModel, LlamaForCausalLM
from .qwen.configuration_qwen import QWenConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
class LlavaQwenConfig(QWenConfig):
model_type = "llava_qwen"
class LlavaQwenModel(LlavaMetaModel, AutoModelForCausalLM):
config_class = LlavaQwenConfig
def __init__(self, config: QWenConfig):
super(LlavaQwenModel, self).__init__(config)
class LlavaQwenForCausalLM(AutoModelForCausalLM, LlavaMetaForCausalLM):
config_class = LlavaQwenConfig
def __init__(self, config):
super(AutoModelForCausalLM, self).__init__(config)
self.model = LlavaQwenModel(config)
self.pretraining_tp = config.pretraining_tp
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
if inputs_embeds is None:
(
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels
) = self.prepare_inputs_labels_for_multimodal(
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
images
)
return super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
images = kwargs.pop("images", None)
_inputs = super().prepare_inputs_for_generation(
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
)
if images is not None:
_inputs['images'] = images
return _inputs
AutoConfig.register("llava_qwen", LlavaQwenConfig)
AutoModelForCausalLM.register(LlavaQwenConfig, LlavaQwenForCausalLM)
But I got the following error:
ValueError: Unrecognized configuration class <class 'transformers_modules.Qwen.Qwen-7B.ef3c5c9c57b252f3149c1408daf4d649ec8b6c85.configuration_qwen.QWenConfig'> for this kind o
f AutoModel: LlavaQwenForCausalLM.
Model type should be one of BartConfig, BertConfig, BertGenerationConfig, BigBirdConfig, BigBirdPegasusConfig, BioGptConfig, BlenderbotConfig, BlenderbotSmallConfig, BloomConf
ig, CamembertConfig, CodeGenConfig, CpmAntConfig, CTRLConfig, Data2VecTextConfig, ElectraConfig, ErnieConfig, FalconConfig, GitConfig, GPT2Config, GPT2Config, GPTBigCodeConfig
, GPTNeoConfig, GPTNeoXConfig, GPTNeoXJapaneseConfig, GPTJConfig, LlamaConfig, MarianConfig, MBartConfig, MegaConfig, MegatronBertConfig, MptConfig, MusicgenConfig, MvpConfig,
OpenLlamaConfig, OpenAIGPTConfig, OPTConfig, PegasusConfig, PLBartConfig, ProphetNetConfig, QDQBertConfig, ReformerConfig, RemBertConfig, RobertaConfig, RobertaPreLayerNormCo
nfig, RoCBertConfig, RoFormerConfig, RwkvConfig, Speech2Text2Config, TransfoXLConfig, TrOCRConfig, XGLMConfig, XLMConfig, XLMProphetNetConfig, XLMRobertaConfig, XLMRobertaXLCo
nfig, XLNetConfig, XmodConfig, LlavaConfig, LlavaMPTConfig, LlavaQwenConfig.
Hi,I have the same issue. Have you solved it?
@20191864218 Hi, yes, I've already adapt the qwen model to llava. Many details should be noticed.
I suggest you to follow this repo to adapt qwen to llava: https://github.com/Ucas-HaoranWei/Vary Vary is made from LLaVA-v1, an old version of llava. If you don't mind the version of llava, you can refer to the repo.
By the way, Qwen team just pulished the newest qwen-1.5 series, I don't know whether it is easier to adapt. I hope so!