Vehicle-Front-Rear-Detection-for-License-Plate-Detection-Enhancement
Vehicle-Front-Rear-Detection-for-License-Plate-Detection-Enhancement copied to clipboard
Could you help please with AlexeyAB / darknet
Hello! First, thank you so much for your work and this solution! I'm trying to use TensorRT version of darknet on Jetson Xavier, instead of https://github.com/pjreddie/darknet, but getting NULL Pointer error. Could you please explain and give advice if it possible to resolve this issue
Thank you so much in advance!
root@jetsonNX:/home/user/Vehicle-Front-Rear-Detection-for-License-Plate-Detection-Enhancement# python Front_Rear_Detect.py
FRD Net pre-loading...
Try to load cfg: data/FRD/FRNet_YOLOv3_tiny.cfg, clear = 0
0 : compute_capability = 720, cudnn_half = 1, GPU: Xavier
net.optimized_memory = 0
mini_batch = 1, batch = 1, time_steps = 1, train = 1
layer filters size/strd(dil) input output
0 Create CUDA-stream - 0
Create cudnn-handle 0
conv 16 3 x 3/ 1 416 x 416 x 3 -> 416 x 416 x 16 0.150 BF
1 max 2x 2/ 2 416 x 416 x 16 -> 208 x 208 x 16 0.003 BF
2 conv 32 3 x 3/ 1 208 x 208 x 16 -> 208 x 208 x 32 0.399 BF
3 max 2x 2/ 2 208 x 208 x 32 -> 104 x 104 x 32 0.001 BF
4 conv 64 3 x 3/ 1 104 x 104 x 32 -> 104 x 104 x 64 0.399 BF
5 max 2x 2/ 2 104 x 104 x 64 -> 52 x 52 x 64 0.001 BF
6 conv 128 3 x 3/ 1 52 x 52 x 64 -> 52 x 52 x 128 0.399 BF
7 max 2x 2/ 2 52 x 52 x 128 -> 26 x 26 x 128 0.000 BF
8 conv 256 3 x 3/ 1 26 x 26 x 128 -> 26 x 26 x 256 0.399 BF
9 max 2x 2/ 2 26 x 26 x 256 -> 13 x 13 x 256 0.000 BF
10 conv 512 3 x 3/ 1 13 x 13 x 256 -> 13 x 13 x 512 0.399 BF
11 max 2x 2/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.000 BF
12 conv 1024 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
13 conv 256 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 256 0.089 BF
14 conv 512 3 x 3/ 1 13 x 13 x 256 -> 13 x 13 x 512 0.399 BF
15 conv 21 1 x 1/ 1 13 x 13 x 512 -> 13 x 13 x 21 0.004 BF
16 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
17 route 13 -> 13 x 13 x 256
18 conv 128 1 x 1/ 1 13 x 13 x 256 -> 13 x 13 x 128 0.011 BF
19 upsample 2x 13 x 13 x 128 -> 26 x 26 x 128
20 route 19 8 -> 26 x 26 x 384
21 conv 256 3 x 3/ 1 26 x 26 x 384 -> 26 x 26 x 256 1.196 BF
22 conv 21 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 21 0.007 BF
23 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
Total BFLOPS 5.449
avg_outputs = 325057
Allocate additional workspace_size = 38.79 MB
Try to load weights: data/FRD/FRNet_YOLOv3_tiny_126000.weights
Loading weights from data/FRD/FRNet_YOLOv3_tiny_126000.weights...
seen 64, trained: 8064 K-images (126 Kilo-batches_64)
Done! Loaded 24 layers from weights-file
Loaded - names_list: data/FRD/FRNet.names, classes = 2
2021-06-17 22:57:35.861504
('\t\t\tdetecting front and rear using FRD..., Model:', 'data/FRD/FRNet_YOLOv3_tiny.cfg')
Traceback (most recent call last):
File "Front_Rear_Detect.py", line 68, in