color-matcher
color-matcher copied to clipboard
automatic color-grading
============= color-matcher
Description
color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, paintings and film sequences as well as light-field and stopmotion corrections. The methods behind the mappings are based on the approach from Reinhard et al., the Monge-Kantorovich Linearization (MKL) as proposed by Pitie et al. and our analytical solution to a Multi-Variate Gaussian Distribution (MVGD) transfer in conjunction with classical histogram matching. As shown below our HM-MVGD-HM compound outperforms existing methods.
|release| |license| |build_github| |coverage| |pypi_total| |pypi|
|binder|
Results
|vspace|
.. list-table:: :widths: 1 2 2 2 :header-rows: 1 :stub-columns: 1
-
- Source
- Target
- Result
-
- Photograph
- |src_photo|
- |ref_photo|
- |res_photo|
-
- Film sequence
- |src_seq|
- |ref_seq|
- |res_seq|
-
- Light-field correction
- |src_lfp|
- |ref_lfp|
- |res_lfp|
-
- Paintings
- |src_paint|
- |ref_paint|
- |res_paint|
|
Installation
-
via pip:
- install with
pip3 install color-matcher
- type
color-matcher -h
to the command line once installation finished
- install with
-
from source:
- install Python from https://www.python.org/
- download the source_ using
git clone https://github.com/hahnec/color-matcher.git
- go to the root directory
cd color-matcher
- load dependencies
$ pip3 install -r requirements.txt
- install with
python3 setup.py install
- if installation ran smoothly, enter
color-matcher -h
to the command line
CLI Usage
From the root directory of your downloaded repo, you can run the tool on the provided test data by
color-matcher -s './tests/data/scotland_house.png' -r './tests/data/scotland_plain.png'
on a UNIX system where the result is found at ./tests/data/
. A windows equivalent of the above command is
color-matcher --src=".\\tests\\data\\scotland_house.png" --ref=".\\tests\\data\\scotland_plain.png"
Alternatively, you can specify the method or select your images manually with
color-matcher --win --method='hm-mkl-hm'
Note that batch processing is possible by passing a source directory, e.g., via
color-matcher -s './tests/data/' -r './tests/data/scotland_plain.png'
More information on optional arguments, can be found using the help parameter
color-matcher -h
API Usage
.. code-block:: python
from color_matcher import ColorMatcher
from color_matcher.io_handler import load_img_file, save_img_file, FILE_EXTS
from color_matcher.normalizer import Normalizer
import os
img_ref = load_img_file('./tests/data/scotland_plain.png')
src_path = '.'
filenames = [os.path.join(src_path, f) for f in os.listdir(src_path)
if f.lower().endswith(FILE_EXTS)]
cm = ColorMatcher()
for i, fname in enumerate(filenames):
img_src = load_img_file(fname)
img_res = cm.transfer(src=img_src, ref=img_ref, method='mkl')
img_res = Normalizer(img_res).uint8_norm()
save_img_file(img_res, os.path.join(os.path.dirname(fname), str(i)+'.png'))
.. Hyperlink aliases
.. _source: https://github.com/hahnec/color-matcher/archive/master.zip
.. |src_photo| raw:: html
<img src="https://raw.githubusercontent.com/hahnec/color-matcher/master/tests/data/scotland_house.png" max-width="100%">
.. |ref_photo| raw:: html
<img src="https://raw.githubusercontent.com/hahnec/color-matcher/master/tests/data/scotland_plain.png" max-width="100%">
.. |res_photo| raw:: html
<img src="https://raw.githubusercontent.com/hahnec/color-matcher/master/tests/data/scotland_pitie.png" max-width="100%">
.. |src_paint| raw:: html
<img src="https://raw.githubusercontent.com/hahnec/color-matcher/master/tests/data/parismusees/cezanne_paul_trois_baigneuses.png" max-width="100%">
.. |ref_paint| raw:: html
<img src="https://raw.githubusercontent.com/hahnec/color-matcher/master/tests/data/parismusees/cezanne_paul_portrait_dambroise_vollard.png" max-width="100%">
.. |res_paint| raw:: html
<img src="https://raw.githubusercontent.com/hahnec/color-matcher/master/tests/data/parismusees/cezanne_paul_trois_baigneuses_mvgd.png" max-width="100%">
.. |src_seq| raw:: html
<img src="https://raw.githubusercontent.com/hahnec/color-matcher/master/tests/data/wave.gif" max-width="100%">
.. |ref_seq| raw:: html
<img src="https://raw.githubusercontent.com/hahnec/color-matcher/master/tests/data/sunrise.png" max-width="100%">
.. |res_seq| raw:: html
<img src="https://raw.githubusercontent.com/hahnec/color-matcher/master/tests/data/wave_mvgd.gif" max-width="100%">
.. |src_lfp| raw:: html
<img src="https://raw.githubusercontent.com/hahnec/color-matcher/master/tests/data/view_animation_7px.gif" max-width="100%">
.. |ref_lfp| raw:: html
<img src="https://raw.githubusercontent.com/hahnec/color-matcher/master/tests/data/bee_2.png" max-width="100%">
.. |res_lfp| raw:: html
<img src="https://raw.githubusercontent.com/hahnec/color-matcher/master/tests/data/view_animation_7px_hm-mkl-hm.gif" max-width="100%">
.. |vspace| raw:: latex
\vspace{1mm}
.. |metric_chart| raw:: html
<img src="https://raw.githubusercontent.com/hahnec/color-matcher/develop/docs/img/hist+wasser_dist.svg" max-width="100%" align="center">
.. |metric_latex| raw:: latex
W_1 = \int_{0}^{\infty} \left| F\left(\mathbf{r}^{(g)}\right) - F\left(\mathbf{z}^{(g)}\right) \right|_1 \, \mathrm{d}k
D_2 = \left\| f(\mathbf{r}) - f(\mathbf{z}) \right\|_2
.. |metric_eqs| raw:: html
<img src="https://raw.githubusercontent.com/hahnec/color-matcher/develop/docs/img/distance_metrics.svg" max-width="100%" align="center">
.. Image substitutions
.. |release| image:: https://img.shields.io/github/v/release/hahnec/color-matcher?style=square :target: https://github.com/hahnec/color-matcher/releases/ :alt: release
.. |license| image:: https://img.shields.io/badge/License-GPL%20v3.0-orange.svg?style=square :target: https://www.gnu.org/licenses/gpl-3.0.en.html :alt: License
.. |build_travis| image:: https://img.shields.io/travis/com/hahnec/color-matcher?style=square :target: https://travis-ci.com/github/hahnec/color-matcher
.. |build_github| image:: https://img.shields.io/github/workflow/status/hahnec/color-matcher/ColorMatcher's%20CI%20Pipeline/master?style=square :target: https://github.com/hahnec/color-matcher/actions :alt: GitHub Workflow Status
.. |coverage| image:: https://img.shields.io/coveralls/github/hahnec/color-matcher?style=square :target: https://coveralls.io/github/hahnec/color-matcher
.. |pypi| image:: https://img.shields.io/pypi/dm/color-matcher?label=PyPI%20downloads&style=square :target: https://pypi.org/project/color-matcher/ :alt: PyPI Downloads
.. |pypi_total| image:: https://pepy.tech/badge/color-matcher?style=flat-square :target: https://pepy.tech/project/color-matcher :alt: PyPi Dl2
.. |binder| image:: https://img.shields.io/badge/launch-binder-579aca.svg?logo= :target: https://gesis.mybinder.org/binder/v2/gh/hahnec/color-matcher/3a85a06bb546fa6d4294c7fc241de9e3cce2b2e0?urlpath=lab%2Ftree%2F01_api_demo.ipynb
.. |paper| image:: http://img.shields.io/badge/paper-arxiv.2010.11687-red.svg?style=flat-square :target: https://arxiv.org/pdf/2010.11687.pdf :alt: arXiv link
Experimental results
|metric_chart|
The above diagram illustrates light-field color consistency from Wasserstein metric :math:W_1
and histogram distance
:math:D_2
where low values indicate higher similarity between source :math:\mathbf{r}
and target :math:\mathbf{z}
.
These distance metrics are computed as follows
|metric_eqs|
where :math:f(k,\cdot)
and :math:F(k,\cdot)
represent the Probability Density Function (PDF) and Cumulative Density Function (CDF) at intensity level :math:k
, respectively.
More detailed information can be found in our IEEE paper <https://arxiv.org/pdf/2010.11687.pdf>
__.
|vspace|
Citation
.. code-block:: BibTeX
@ARTICLE{plenopticam,
author={Hahne, Christopher and Aggoun, Amar},
journal={IEEE Transactions on Image Processing},
title={PlenoptiCam v1.0: A Light-Field Imaging Framework},
year={2021},
volume={30},
number={},
pages={6757-6771},
doi={10.1109/TIP.2021.3095671}
}
Author
Christopher Hahne <http://www.christopherhahne.de/>
__