why performance of Mask_rcn tensorrt-fp16_dynamic-320x320-1344x1344 is bad
python ./tools/test.py configs/mmdet/instance-seg/instance-seg_tensorrt-fp16_dynamic-320x320-1344x1344.py /data/azuryl/mmdetection_2.27.0/configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py --model /data/azuryl/mmdeploy_model/maskrcnn_f16_d320_1344/end2end.engine --metrics segm --device cuda:0 /data/azuryl/mmdetection_2.27.0/mmdet/datasets/utils.py:70: UserWarning: "ImageToTensor" pipeline is replaced by "DefaultFormatBundle" for batch inference. It is recommended to manually replace it in the test data pipeline in your config file. 'data pipeline in your config file.', UserWarning) loading annotations into memory... Done (t=2.09s) creating index... index created! 2021-07-23 02:54:25,221 - mmdeploy - INFO - Successfully loaded tensorrt plugins from /data/azuryl/mmdeploy_0.7.0/mmdeploy/lib/libmmdeploy_tensorrt_ops.so 2021-07-23 02:54:25,222 - mmdeploy - INFO - Successfully loaded tensorrt plugins from /data/azuryl/mmdeploy_0.7.0/mmdeploy/lib/libmmdeploy_tensorrt_ops.so [>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 4952/4952, 4.0 task/s, elapsed: 1242s, ETA: 0s Evaluating segm... /data/azuryl/mmdetection_2.27.0/mmdet/datasets/coco.py:474: UserWarning: The key "bbox" is deleted for more accurate mask AP of small/medium/large instances since v2.12.0. This does not change the overall mAP calculation. UserWarning) Loading and preparing results... DONE (t=8.15s) creating index... index created! Running per image evaluation... Evaluate annotation type segm DONE (t=154.80s). Accumulating evaluation results... DONE (t=21.92s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.196 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.394 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.173 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.009 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.160 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.466 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.278 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.278 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.278 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.027 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.253 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.586
2021-07-23 03:19:01,735 - test - INFO - OrderedDict([('segm_mAP', 0.196), ('segm_mAP_50', 0.394), ('segm_mAP_75', 0.173), ('segm_mAP_s', 0.009), ('segm_mAP_m', 0.16), ('segm_mAP_l', 0.466), ('segm_mAP_copypaste', '0.196 0.394 0.173 0.009 0.160 0.466')])
This repo is developed on dependency
torch=1.8.1
tensorrt=8.0.1.6
mmdetection=2.18.0
cuda=11.1
which are relatively old versions. I do not have much time to maintain this repo. Please move to mmdeploy which provide latest library support and more backends.