pytorch-neural-style-transfer
pytorch-neural-style-transfer copied to clipboard
Changing height value doesn't produce any results.
Editing the neural_style_transfer.py and changing the default value for --height or using --height value on the command line produces no end result. The data/output-images folder created is blank.
Edited the default value and change it to 1280 for a photo I wanted to use. I have a Titan RTX
(pytorch-nst) gateway@gateway-media:~/work/ns/pytorch-neural-style-transfer$ python neural_style_transfer.py --content_img_name i1.jpg --style_img_name tre.jpg
Using vgg19 in the optimization procedure.
L-BFGS | iteration: 000, total loss=2920575401984.0000, content_loss= 0.0000, style loss=2920527360000.0000, tv loss=48057560.0000
L-BFGS | iteration: 001, total loss=2920575401984.0000, content_loss= 0.0001, style loss=2920527360000.0000, tv loss=48057560.0000
L-BFGS | iteration: 002, total loss=2920575401984.0000, content_loss= 0.0001, style loss=2920527360000.0000, tv loss=48057560.0000
L-BFGS | iteration: 003, total loss=2920575401984.0000, content_loss= 0.0001, style loss=2920527360000.0000, tv loss=48057560.0000
L-BFGS | iteration: 004, total loss=2920575401984.0000, content_loss= 0.0001, style loss=2920527360000.0000, tv loss=48057560.0000
Uses the command line switch
(pytorch-nst) gateway@gateway-media:~/work/ns/pytorch-neural-style-transfer$ python neural_style_transfer.py --content_img_name i1.jpg --style_img_name tre.jpg --height 1280
Using vgg19 in the optimization procedure.
L-BFGS | iteration: 000, total loss=10584828411904.0000, content_loss= 0.0000, style loss=10584816000000.0000, tv loss=12864146.0000
L-BFGS | iteration: 001, total loss=10584828411904.0000, content_loss= 0.0002, style loss=10584816000000.0000, tv loss=12864146.0000
L-BFGS | iteration: 002, total loss=10584828411904.0000, content_loss= 0.0002, style loss=10584816000000.0000, tv loss=12864146.0000
L-BFGS | iteration: 003, total loss=10584828411904.0000, content_loss= 0.0002, style loss=10584816000000.0000, tv loss=12864146.0000
L-BFGS | iteration: 004, total loss=10584828411904.0000, content_loss= 0.0002, style loss=10584816000000.0000, tv loss=12864146.0000
(pytorch-nst) gateway@gateway-media:~/work/ns/pytorch-neural-style-transfer$
nvidia-smi
Tue Oct 13 16:35:56 2020
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.80.02 Driver Version: 450.80.02 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 TITAN RTX Off | 00000000:01:00.0 Off | N/A |
| 41% 29C P8 15W / 280W | 292MiB / 24220MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 GeForce GTX 1080 Off | 00000000:02:00.0 Off | N/A |
| 21% 33C P8 5W / 180W | 2MiB / 8119MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 2061 G /usr/lib/xorg/Xorg 191MiB |
| 0 N/A N/A 2745 G ...mviewer/tv_bin/TeamViewer 13MiB |
| 0 N/A N/A 2949 G /usr/bin/gnome-shell 83MiB |
+-----------------------------------------------------------------------------+
Same issue here too
I found out if you use Adam optimizer, you will be OK to use a larger size. However, if you keep using LBFGS, increasing the learning rate can also help avoid this glitch.
Also having this issue, I'm able to go up to 2500 pixels on the caffee model but this one seems to break at the 4th iteration, no idea how to fix it. I'm disappointed because the results are otherwise fantastic, it's just unstable at higher resolutions. I've been trying to achieve similar results to this repo in others but I haven't been successful yet.
Fixed the issue, you just need to scale tv/style/content weight by the height. If you don't the value for content loss won't go up and it doesn't know what to do and just ceases. Currently on interation 264 at 2200 pixels with CPU to get around VRAM limitations. Fingers crossed it remains stable.
@Finerrkekz Would you mind share this piece of code? I had have seen that the loss did not change and the LBFGS did just stop. I have tried multiple tv/style/content variations without success. Interesting side aspect: When running accidently on the CPU it worked with the default values.
any one fixed this issue?