python-samples icon indicating copy to clipboard operation
python-samples copied to clipboard

Update dependency numpy to v1.23.0

Open renovate[bot] opened this issue 3 years ago β€’ 0 comments

Mend Renovate

This PR contains the following updates:

Package Change Age Adoption Passing Confidence
numpy (source) ==1.22.1 -> ==1.23.0 age adoption passing confidence

Release Notes

numpy/numpy

v1.23.0

Compare Source

NumPy 1.23.0 Release Notes

The NumPy 1.23.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, clarify the documentation, and expire old deprecations. The highlights are:

  • Implementation of loadtxt in C, greatly improving its performance.
  • Exposing DLPack at the Python level for easy data exchange.
  • Changes to the promotion and comparisons of structured dtypes.
  • Improvements to f2py.

See below for the details,

New functions

  • A masked array specialization of ndenumerate is now available as numpy.ma.ndenumerate. It provides an alternative to numpy.ndenumerate and skips masked values by default.

    (gh-20020)

  • numpy.from_dlpack has been added to allow easy exchange of data using the DLPack protocol. It accepts Python objects that implement the __dlpack__ and __dlpack_device__ methods and returns a ndarray object which is generally the view of the data of the input object.

    (gh-21145)

Deprecations

  • Setting __array_finalize__ to None is deprecated. It must now be a method and may wish to call super().__array_finalize__(obj) after checking for None or if the NumPy version is sufficiently new.

    (gh-20766)

  • Using axis=32 (axis=np.MAXDIMS) in many cases had the same meaning as axis=None. This is deprecated and axis=None must be used instead.

    (gh-20920)

  • The hook function PyDataMem_SetEventHook has been deprecated and the demonstration of its use in tool/allocation_tracking has been removed. The ability to track allocations is now built-in to python via tracemalloc.

    (gh-20394)

  • numpy.distutils has been deprecated, as a result of distutils itself being deprecated. It will not be present in NumPy for Python >= 3.12, and will be removed completely 2 years after the release of Python 3.12 For more details, see distutils-status-migration{.interpreted-text role="ref"}.

    (gh-20875)

  • numpy.loadtxt will now give a DeprecationWarning when an integer dtype is requested but the value is formatted as a floating point number.

    (gh-21663)

Expired deprecations

  • The NpzFile.iteritems() and NpzFile.iterkeys() methods have been removed as part of the continued removal of Python 2 compatibility. This concludes the deprecation from 1.15.

    (gh-16830)

  • The alen and asscalar functions have been removed.

    (gh-20414)

  • The UPDATEIFCOPY array flag has been removed together with the enum NPY_ARRAY_UPDATEIFCOPY. The associated (and deprecated) PyArray_XDECREF_ERR was also removed. These were all deprecated in 1.14. They are replaced by WRITEBACKIFCOPY, that requires calling PyArray_ResoveWritebackIfCopy before the array is deallocated.

    (gh-20589)

  • Exceptions will be raised during array-like creation. When an object raised an exception during access of the special attributes __array__ or __array_interface__, this exception was usually ignored. This behaviour was deprecated in 1.21, and the exception will now be raised.

    (gh-20835)

  • Multidimensional indexing with non-tuple values is not allowed. Previously, code such as arr[ind] where ind = [[0, 1], [0, 1]] produced a FutureWarning and was interpreted as a multidimensional index (i.e., arr[tuple(ind)]). Now this example is treated like an array index over a single dimension (arr[array(ind)]). Multidimensional indexing with anything but a tuple was deprecated in NumPy 1.15.

    (gh-21029)

  • Changing to a dtype of different size in F-contiguous arrays is no longer permitted. Deprecated since Numpy 1.11.0. See below for an extended explanation of the effects of this change.

    (gh-20722)

New Features

crackfortran has support for operator and assignment overloading

crackfortran parser now understands operator and assignment definitions in a module. They are added in the body list of the module which contains a new key implementedby listing the names of the subroutines or functions implementing the operator or assignment.

(gh-15006)

f2py supports reading access type attributes from derived type statements

As a result, one does not need to use public or private statements to specify derived type access properties.

(gh-15844)

New parameter ndmin added to genfromtxt

This parameter behaves the same as ndmin from numpy.loadtxt.

(gh-20500)

np.loadtxt now supports quote character and single converter function

numpy.loadtxt now supports an additional quotechar keyword argument which is not set by default. Using quotechar='"' will read quoted fields as used by the Excel CSV dialect.

Further, it is now possible to pass a single callable rather than a dictionary for the converters argument.

(gh-20580)

Changing to dtype of a different size now requires contiguity of only the last axis

Previously, viewing an array with a dtype of a different item size required that the entire array be C-contiguous. This limitation would unnecessarily force the user to make contiguous copies of non-contiguous arrays before being able to change the dtype.

This change affects not only ndarray.view, but other construction mechanisms, including the discouraged direct assignment to ndarray.dtype.

This change expires the deprecation regarding the viewing of F-contiguous arrays, described elsewhere in the release notes.

(gh-20722)

Deterministic output files for F2PY

For F77 inputs, f2py will generate modname-f2pywrappers.f unconditionally, though these may be empty. For free-form inputs, modname-f2pywrappers.f, modname-f2pywrappers2.f90 will both be generated unconditionally, and may be empty. This allows writing generic output rules in cmake or meson and other build systems. Older behavior can be restored by passing --skip-empty-wrappers to f2py. f2py-meson{.interpreted-text role="ref"} details usage.

(gh-21187)

keepdims parameter for average

The parameter keepdims was added to the functions numpy.average and numpy.ma.average. The parameter has the same meaning as it does in reduction functions such as numpy.sum or numpy.mean.

(gh-21485)

New parameter equal_nan added to np.unique

np.unique was changed in 1.21 to treat all NaN values as equal and return a single NaN. Setting equal_nan=False will restore pre-1.21 behavior to treat NaNs as unique. Defaults to True.

(gh-21623)

Compatibility notes

1D np.linalg.norm preserves float input types, even for scalar results

Previously, this would promote to float64 when the ord argument was not one of the explicitly listed values, e.g. ord=3:

>>> f32 = np.float32([1, 2])
>>> np.linalg.norm(f32, 2).dtype
dtype('float32')
>>> np.linalg.norm(f32, 3)
dtype('float64')  # numpy 1.22
dtype('float32')  # numpy 1.23

This change affects only float32 and float16 vectors with ord other than -Inf, 0, 1, 2, and Inf.

(gh-17709)

Changes to structured (void) dtype promotion and comparisons

In general, NumPy now defines correct, but slightly limited, promotion for structured dtypes by promoting the subtypes of each field instead of raising an exception:

>>> np.result_type(np.dtype("i,i"), np.dtype("i,d"))
dtype([('f0', '<i4'), ('f1', '<f8')])

For promotion matching field names, order, and titles are enforced, however padding is ignored. Promotion involving structured dtypes now always ensures native byte-order for all fields (which may change the result of np.concatenate) and ensures that the result will be "packed", i.e. all fields are ordered contiguously and padding is removed. See structured_dtype_comparison_and_promotion{.interpreted-text role="ref"} for further details.

The repr of aligned structures will now never print the long form including offsets and itemsize unless the structure includes padding not guaranteed by align=True.

In alignment with the above changes to the promotion logic, the casting safety has been updated:

  • "equiv" enforces matching names and titles. The itemsize is allowed to differ due to padding.
  • "safe" allows mismatching field names and titles
  • The cast safety is limited by the cast safety of each included field.
  • The order of fields is used to decide cast safety of each individual field. Previously, the field names were used and only unsafe casts were possible when names mismatched.

The main important change here is that name mismatches are now considered "safe" casts.

(gh-19226)

NPY_RELAXED_STRIDES_CHECKING has been removed

NumPy cannot be compiled with NPY_RELAXED_STRIDES_CHECKING=0 anymore. Relaxed strides have been the default for many years and the option was initially introduced to allow a smoother transition.

(gh-20220)

np.loadtxt has recieved several changes

The row counting of numpy.loadtxt was fixed. loadtxt ignores fully empty lines in the file, but counted them towards max_rows. When max_rows is used and the file contains empty lines, these will now not be counted. Previously, it was possible that the result contained fewer than max_rows rows even though more data was available to be read. If the old behaviour is required, itertools.islice may be used:

import itertools
lines = itertools.islice(open("file"), 0, max_rows)
result = np.loadtxt(lines, ...)

While generally much faster and improved, numpy.loadtxt may now fail to converter certain strings to numbers that were previously successfully read. The most important cases for this are:

  • Parsing floating point values such as 1.0 into integers is now deprecated.
  • Parsing hexadecimal floats such as 0x3p3 will fail
  • An _ was previously accepted as a thousands delimiter 100_000. This will now result in an error.

If you experience these limitations, they can all be worked around by passing appropriate converters=. NumPy now supports passing a single converter to be used for all columns to make this more convenient. For example, converters=float.fromhex can read hexadecimal float numbers and converters=int will be able to read 100_000.

Further, the error messages have been generally improved. However, this means that error types may differ. In particularly, a ValueError is now always raised when parsing of a single entry fails.

(gh-20580)

Improvements

ndarray.__array_finalize__ is now callable

This means subclasses can now use super().__array_finalize__(obj) without worrying whether ndarray is their superclass or not. The actual call remains a no-op.

(gh-20766)

Add support for VSX4/Power10

With VSX4/Power10 enablement, the new instructions available in Power ISA 3.1 can be used to accelerate some NumPy operations, e.g., floor_divide, modulo, etc.

(gh-20821)

np.fromiter now accepts objects and subarrays

The numpy.fromiter function now supports object and subarray dtypes. Please see he function documentation for examples.

(gh-20993)

Math C library feature detection now uses correct signatures

Compiling is preceded by a detection phase to determine whether the underlying libc supports certain math operations. Previously this code did not respect the proper signatures. Fixing this enables compilation for the wasm-ld backend (compilation for web assembly) and reduces the number of warnings.

(gh-21154)

np.kron now maintains subclass information

np.kron maintains subclass information now such as masked arrays while computing the Kronecker product of the inputs

>>> x = ma.array([[1, 2], [3, 4]], mask=[[0, 1], [1, 0]])
>>> np.kron(x,x)
masked_array(
  data=[[1, --, --, --],
        [--, 4, --, --],
        [--, --, 4, --],
        [--, --, --, 16]],
  mask=[[False,  True,  True,  True],
        [ True, False,  True,  True],
        [ True,  True, False,  True],
        [ True,  True,  True, False]],
  fill_value=999999)

:warning: Warning, np.kron output now follows ufunc ordering (multiply) to determine the output class type

>>> class myarr(np.ndarray):
>>>    __array_priority__ = -1
>>> a = np.ones([2, 2])
>>> ma = myarray(a.shape, a.dtype, a.data)
>>> type(np.kron(a, ma)) == np.ndarray
False # Before it was True
>>> type(np.kron(a, ma)) == myarr
True

(gh-21262)

Performance improvements and changes

Faster np.loadtxt

numpy.loadtxt is now generally much faster than previously as most of it is now implemented in C.

(gh-20580)

Faster reduction operators

Reduction operations like numpy.sum, numpy.prod, numpy.add.reduce, numpy.logical_and.reduce on contiguous integer-based arrays are now much faster.

(gh-21001)

Faster np.where

numpy.where is now much faster than previously on unpredictable/random input data.

(gh-21130)

Faster operations on NumPy scalars

Many operations on NumPy scalars are now significantly faster, although rare operations (e.g. with 0-D arrays rather than scalars) may be slower in some cases. However, even with these improvements users who want the best performance for their scalars, may want to convert a known NumPy scalar into a Python one using scalar.item().

(gh-21188)

Faster np.kron

numpy.kron is about 80% faster as the product is now computed using broadcasting.

(gh-21354)

Checksums

MD5
21839aaeab3088e685d7c8d0e1856a23  numpy-1.23.0-cp310-cp310-macosx_10_9_x86_64.whl
e657684ea521c50de0197aabfb44e78d  numpy-1.23.0-cp310-cp310-macosx_11_0_arm64.whl
219017660861fdec59b852630e3fef2a  numpy-1.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
03c3df83b8327910482a7d24ebe9213b  numpy-1.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b8f06ce4054acc147845a9643bd36082  numpy-1.23.0-cp310-cp310-win32.whl
877322db5a62634eef4e351db99a070d  numpy-1.23.0-cp310-cp310-win_amd64.whl
7bb54f95e74306eff733466b6343695f  numpy-1.23.0-cp38-cp38-macosx_10_9_x86_64.whl
5514a0030e5cf065e916950737d6d129  numpy-1.23.0-cp38-cp38-macosx_11_0_arm64.whl
22d43465791814fe50e03ded430bd80c  numpy-1.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
771a1f7e488327645bac5b54dd2f6286  numpy-1.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
449bfa2d55aff3e722d2fc85a7549620  numpy-1.23.0-cp38-cp38-win32.whl
60c7d27cf92dadb6d206df6e65b1032f  numpy-1.23.0-cp38-cp38-win_amd64.whl
dc2a5c5d2223f7b45a45f7f760d0f2db  numpy-1.23.0-cp39-cp39-macosx_10_9_x86_64.whl
ba5729353c3521ed7ee72c796e77a546  numpy-1.23.0-cp39-cp39-macosx_11_0_arm64.whl
06d5cd49de096482944dead2eb92d783  numpy-1.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6ff50a994f6006349b5f1415e4da6f45  numpy-1.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
49185f219512403ef23d43d6f2adbefd  numpy-1.23.0-cp39-cp39-win32.whl
ff126a84dcf91700f9ca13ff606d109f  numpy-1.23.0-cp39-cp39-win_amd64.whl
e1462428487dc599cdffb723dec642c4  numpy-1.23.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
fef1d20265135737fbc0f91ca4441990  numpy-1.23.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4f8142288202a32c682d01921d6c2c78  numpy-1.23.0-pp38-pypy38_pp73-win_amd64.whl
513e4241d06b8fae5732cd049cdf3b57  numpy-1.23.0.tar.gz
SHA256
58bfd40eb478f54ff7a5710dd61c8097e169bc36cc68333d00a9bcd8def53b38  numpy-1.23.0-cp310-cp310-macosx_10_9_x86_64.whl
196cd074c3f97c4121601790955f915187736f9cf458d3ee1f1b46aff2b1ade0  numpy-1.23.0-cp310-cp310-macosx_11_0_arm64.whl
f1d88ef79e0a7fa631bb2c3dda1ea46b32b1fe614e10fedd611d3d5398447f2f  numpy-1.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d54b3b828d618a19779a84c3ad952e96e2c2311b16384e973e671aa5be1f6187  numpy-1.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2b2da66582f3a69c8ce25ed7921dcd8010d05e59ac8d89d126a299be60421171  numpy-1.23.0-cp310-cp310-win32.whl
97a76604d9b0e79f59baeca16593c711fddb44936e40310f78bfef79ee9a835f  numpy-1.23.0-cp310-cp310-win_amd64.whl
d8cc87bed09de55477dba9da370c1679bd534df9baa171dd01accbb09687dac3  numpy-1.23.0-cp38-cp38-macosx_10_9_x86_64.whl
f0f18804df7370571fb65db9b98bf1378172bd4e962482b857e612d1fec0f53e  numpy-1.23.0-cp38-cp38-macosx_11_0_arm64.whl
ac86f407873b952679f5f9e6c0612687e51547af0e14ddea1eedfcb22466babd  numpy-1.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ae8adff4172692ce56233db04b7ce5792186f179c415c37d539c25de7298d25d  numpy-1.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fe8b9683eb26d2c4d5db32cd29b38fdcf8381324ab48313b5b69088e0e355379  numpy-1.23.0-cp38-cp38-win32.whl
5043bcd71fcc458dfb8a0fc5509bbc979da0131b9d08e3d5f50fb0bbb36f169a  numpy-1.23.0-cp38-cp38-win_amd64.whl
1c29b44905af288b3919803aceb6ec7fec77406d8b08aaa2e8b9e63d0fe2f160  numpy-1.23.0-cp39-cp39-macosx_10_9_x86_64.whl
98e8e0d8d69ff4d3fa63e6c61e8cfe2d03c29b16b58dbef1f9baa175bbed7860  numpy-1.23.0-cp39-cp39-macosx_11_0_arm64.whl
79a506cacf2be3a74ead5467aee97b81fca00c9c4c8b3ba16dbab488cd99ba10  numpy-1.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
092f5e6025813e64ad6d1b52b519165d08c730d099c114a9247c9bb635a2a450  numpy-1.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d6ca8dabe696c2785d0c8c9b0d8a9b6e5fdbe4f922bde70d57fa1a2848134f95  numpy-1.23.0-cp39-cp39-win32.whl
fc431493df245f3c627c0c05c2bd134535e7929dbe2e602b80e42bf52ff760bc  numpy-1.23.0-cp39-cp39-win_amd64.whl
f9c3fc2adf67762c9fe1849c859942d23f8d3e0bee7b5ed3d4a9c3eeb50a2f07  numpy-1.23.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
d0d2094e8f4d760500394d77b383a1b06d3663e8892cdf5df3c592f55f3bff66  numpy-1.23.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
94b170b4fa0168cd6be4becf37cb5b127bd12a795123984385b8cd4aca9857e5  numpy-1.23.0-pp38-pypy38_pp73-win_amd64.whl
bd3fa4fe2e38533d5336e1272fc4e765cabbbde144309ccee8675509d5cd7b05  numpy-1.23.0.tar.gz

v1.22.4

Compare Source

NumPy 1.22.4 Release Notes

NumPy 1.22.4 is a maintenance release that fixes bugs discovered after the 1.22.3 release. In addition, the wheels for this release are built using the recently released Cython 0.29.30, which should fix the reported problems with debugging.

The Python versions supported for this release are 3.8-3.10. Note that the Mac wheels are now based on OS X 10.15 rather than 10.6 that was used in previous NumPy release cycles.

Contributors

A total of 12 people contributed to this release. People with a "+" by their names contributed a patch for the first time.

  • Alexander Shadchin
  • Bas van Beek
  • Charles Harris
  • Hood Chatham
  • Jarrod Millman
  • John-Mark Gurney +
  • Junyan Ou +
  • Mariusz Felisiak +
  • Ross Barnowski
  • Sebastian Berg
  • Serge Guelton
  • Stefan van der Walt

Pull requests merged

A total of 22 pull requests were merged for this release.

Checksums

MD5
a19351fd3dc0b3bbc733495ed18b8f24  numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl
0730f9e196f70ad89f246bf95ccf05d5  numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl
63c74e5395a2b31d8adc5b1aa0c62471  numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl
f99778023770c12f896768c90f7712e5  numpy-1.22.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
757d68b0cdb4e28ffce8574b6a2f3c5e  numpy-1.22.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
50becf2e048e54dc5227dfe8378aae1e  numpy-1.22.4-cp310-cp310-win32.whl
79dfdc29a4730e44d6df33dbea5b35b0  numpy-1.22.4-cp310-cp310-win_amd64.whl
8fd8f04d71ead55c2773d1b46668ca67  numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl
41a7c6240081010824cc0d5c02900fe6  numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl
6bc066d3f61da3304c82d92f3f900a4f  numpy-1.22.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
86d959605c66ccba11c6504f25fff0d7  numpy-1.22.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ae0405894c065349a511e4575b919e2a  numpy-1.22.4-cp38-cp38-win32.whl
c9a731d08081396b7a1b66977734d2ac  numpy-1.22.4-cp38-cp38-win_amd64.whl
4d9b97d74799e5fc48860f0b4a3b255a  numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl
c99fa7e04cb7cc23f1713f2023b4e489  numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl
dda3815df12b8a99c6c3069f69997521  numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl
9b7c5b39d5611d92b66eb545d44b25db  numpy-1.22.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
90fc45eaf8b8c4fac3f3ebd105a5a856  numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9562153d4a83d773c20eb626cbd65cde  numpy-1.22.4-cp39-cp39-win32.whl
711b23acce54a18ce74fc80f48f48062  numpy-1.22.4-cp39-cp39-win_amd64.whl
ab803b24ea557452e828adba1b986af3  numpy-1.22.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
09b3a41ea0b9bc20bd1691cf88f0b0d3  numpy-1.22.4.tar.gz
b44849506fbb54cdef9dbb435b2b1987  numpy-1.22.4.zip
SHA256
ba9ead61dfb5d971d77b6c131a9dbee62294a932bf6a356e48c75ae684e635b3  numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl
1ce7ab2053e36c0a71e7a13a7475bd3b1f54750b4b433adc96313e127b870887  numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl
7228ad13744f63575b3a972d7ee4fd61815b2879998e70930d4ccf9ec721dce0  numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl
43a8ca7391b626b4c4fe20aefe79fec683279e31e7c79716863b4b25021e0e74  numpy-1.22.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a911e317e8c826ea632205e63ed8507e0dc877dcdc49744584dfc363df9ca08c  numpy-1.22.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9ce7df0abeabe7fbd8ccbf343dc0db72f68549856b863ae3dd580255d009648e  numpy-1.22.4-cp310-cp310-win32.whl
3e1ffa4748168e1cc8d3cde93f006fe92b5421396221a02f2274aab6ac83b077  numpy-1.22.4-cp310-cp310-win_amd64.whl
59d55e634968b8f77d3fd674a3cf0b96e85147cd6556ec64ade018f27e9479e1  numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl
c1d937820db6e43bec43e8d016b9b3165dcb42892ea9f106c70fb13d430ffe72  numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl
d4c5d5eb2ec8da0b4f50c9a843393971f31f1d60be87e0fb0917a49133d257d6  numpy-1.22.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
64f56fc53a2d18b1924abd15745e30d82a5782b2cab3429aceecc6875bd5add0  numpy-1.22.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fb7a980c81dd932381f8228a426df8aeb70d59bbcda2af075b627bbc50207cba  numpy-1.22.4-cp38-cp38-win32.whl
e96d7f3096a36c8754207ab89d4b3282ba7b49ea140e4973591852c77d09eb76  numpy-1.22.4-cp38-cp38-win_amd64.whl
4c6036521f11a731ce0648f10c18ae66d7143865f19f7299943c985cdc95afb5  numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl
b89bf9b94b3d624e7bb480344e91f68c1c6c75f026ed6755955117de00917a7c  numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl
2d487e06ecbf1dc2f18e7efce82ded4f705f4bd0cd02677ffccfb39e5c284c7e  numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl
f3eb268dbd5cfaffd9448113539e44e2dd1c5ca9ce25576f7c04a5453edc26fa  numpy-1.22.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
37431a77ceb9307c28382c9773da9f306435135fae6b80b62a11c53cfedd8802  numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc7f00008eb7d3f2489fca6f334ec19ca63e31371be28fd5dad955b16ec285bd  numpy-1.22.4-cp39-cp39-win32.whl
f0725df166cf4785c0bc4cbfb320203182b1ecd30fee6e541c8752a92df6aa32  numpy-1.22.4-cp39-cp39-win_amd64.whl
0791fbd1e43bf74b3502133207e378901272f3c156c4df4954cad833b1380207  numpy-1.22.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b4308198d0e41efaa108e57d69973398439c7299a9d551680cdd603cf6d20709  numpy-1.22.4.tar.gz
425b390e4619f58d8526b3dcf656dde069133ae5c240229821f01b5f44ea07af  numpy-1.22.4.zip

v1.22.3

Compare Source

NumPy 1.22.3 Release Notes

NumPy 1.22.3 is a maintenance release that fixes bugs discovered after the 1.22.2 release. The most noticeable fixes may be those for DLPack. One that may cause some problems is disallowing strings as inputs to logical ufuncs. It is still undecided how strings should be treated in those functions and it was thought best to simply disallow them until a decision was reached. That should not cause problems with older code.

The Python versions supported for this release are 3.8-3.10. Note that the Mac wheels are now based on OS X 10.14 rather than 10.9 that was used in previous NumPy release cycles. 10.14 is the oldest release supported by Apple.

Contributors

A total of 9 people contributed to this release. People with a "+" by their names contributed a patch for the first time.

  • @​GalaxySnail +
  • Alexandre de Siqueira
  • Bas van Beek
  • Charles Harris
  • Melissa Weber MendonΓ§a
  • Ross Barnowski
  • Sebastian Berg
  • Tirth Patel
  • Matthieu Darbois

Pull requests merged

A total of 10 pull requests were merged for this release.

  • #​21048: MAINT: Use "3.10" instead of "3.10-dev" on travis.
  • #​21106: TYP,MAINT: Explicitly allow sequences of array-likes in np.concatenate
  • #​21137: BLD,DOC: skip broken ipython 8.1.0
  • #​21138: BUG, ENH: np._from_dlpack: export correct device information
  • #​21139: BUG: Fix numba DUFuncs added loops getting picked up
  • #​21140: BUG: Fix unpickling an empty ndarray with a non-zero dimension...
  • #​21141: BUG: use ThreadPoolExecutor instead of ThreadPool
  • #​21142: API: Disallow strings in logical ufuncs
  • #​21143: MAINT, DOC: Fix SciPy intersphinx link
  • #​21148: BUG,ENH: np._from_dlpack: export arrays with any strided size-1...

Checksums

MD5
14f1872bbab050b0579e5fcd8b341b81  numpy-1.22.3-cp310-cp310-macosx_10_14_x86_64.whl
c673faa3ac8745ad10ed0428a21a77aa  numpy-1.22.3-cp310-cp310-macosx_11_0_arm64.whl
d925fff720561673fd7ee8ead0e94935  numpy-1.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
319f97f5ee26b9c3c06f7a2a3df412a3  numpy-1.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
866eae5dba934cad50eb38c8505c8449  numpy-1.22.3-cp310-cp310-win32.whl
e4c512437a6d4eb4a384225861067ad8  numpy-1.22.3-cp310-cp310-win_amd64.whl
a28052af37037f0d5c3b47f4a7040135  numpy-1.22.3-cp38-cp38-macosx_10_14_x86_64.whl
d22dc074bde64f6e91a2d1990345f821  numpy-1.22.3-cp38-cp38-macosx_11_0_arm64.whl
e8a01c2ca1474aff142366a0a2fe0812  numpy-1.22.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4fe6e71e7871cb31ffc4122aa5707be7  numpy-1.22.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1273fb3c77383ab28f2fb05192751340  numpy-1.22.3-cp38-cp38-win32.whl
001244a6bafa640d7509c85661a4e98e  numpy-1.22.3-cp38-cp38-win_amd64.whl
b8694b880a1a68d1716f60a9c9e82b38  numpy-1.22.3-cp39-cp39-macosx_10_14_x86_64.whl
ba122eaa0988801e250f8674e3dd612e  numpy-1.22.3-cp39-cp39-macosx_11_0_arm64.whl
3641825aca07cb26732425e52d034daf  numpy-1.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f92412e4273c2580abcc1b75c56e9651  numpy-1.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b38604778ffd0a17931c06738c3ce9ed  numpy-1.22.3-cp39-cp39-win32.whl
644e0b141fa36a1baf0338032254cc9a  numpy-1.22.3-cp39-cp39-win_amd64.whl
99d2dfb943327b108b2c3b923bd42000  numpy-1.22.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3305c27e5bdf7f19247a7eee00ac053e  numpy-1.22.3.tar.gz
b56530be068796a50bf5a09105c8011e  numpy-1.22.3.zip
SHA256
92bfa69cfbdf7dfc3040978ad09a48091143cffb778ec3b03fa170c494118d75  numpy-1.22.3-cp310-cp310-macosx_10_14_x86_64.whl
8251ed96f38b47b4295b1ae51631de7ffa8260b5b087808ef09a39a9d66c97ab  numpy-1.22.3-cp310-cp310-macosx_11_0_arm64.whl
48a3aecd3b997bf452a2dedb11f4e79bc5bfd21a1d4cc760e703c31d57c84b3e  numpy-1.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a3bae1a2ed00e90b3ba5f7bd0a7c7999b55d609e0c54ceb2b076a25e345fa9f4  numpy-1.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f950f8845b480cffe522913d35567e29dd381b0dc7e4ce6a4a9f9156417d2430  numpy-1.22.3-cp310-cp310-win32.whl
08d9b008d0156c70dc392bb3ab3abb6e7a711383c3247b410b39962263576cd4  numpy-1.22.3-cp310-cp310-win_amd64.whl
201b4d0552831f7250a08d3b38de0d989d6f6e4658b709a02a73c524ccc6ffce  numpy-1.22.3-cp38-cp38-macosx_10_14_x86_64.whl
f8c1f39caad2c896bc0018f699882b345b2a63708008be29b1f355ebf6f933fe  numpy-1.22.3-cp38-cp38-macosx_11_0_arm64.whl
568dfd16224abddafb1cbcce2ff14f522abe037268514dd7e42c6776a1c3f8e5  numpy-1.22.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3ca688e1b9b95d80250bca34b11a05e389b1420d00e87a0d12dc45f131f704a1  numpy-1.22.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e7927a589df200c5e23c57970bafbd0cd322459aa7b1ff73b7c2e84d6e3eae62  numpy-1.22.3-cp38-cp38-win32.whl
07a8c89a04997625236c5ecb7afe35a02af3896c8aa01890a849913a2309c676  numpy-1.22.3-cp38-cp38-win_amd64.whl
2c10a93606e0b4b95c9b04b77dc349b398fdfbda382d2a39ba5a822f669a0123  numpy-1.22.3-cp39-cp39-macosx_10_14_x86_64.whl
fade0d4f4d292b6f39951b6836d7a3c7ef5b2347f3c420cd9820a1d90d794802  numpy-1.22.3-cp39-cp39-macosx_11_0_arm64.whl
5bfb1bb598e8229c2d5d48db1860bcf4311337864ea3efdbe1171fb0c5da515d  numpy-1.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
97098b95aa4e418529099c26558eeb8486e66bd1e53a6b606d684d0c3616b168  numpy-1.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fdf3c08bce27132395d3c3ba1503cac12e17282358cb4bddc25cc46b0aca07aa  numpy-1.22.3-cp39-cp39-win32.whl
639b54cdf6aa4f82fe37ebf70401bbb74b8508fddcf4797f9fe59615b8c5813a  numpy-1.22.3-cp39-cp39-win_amd64.whl
c34ea7e9d13a70bf2ab64a2532fe149a9aced424cd05a2c4ba662fd989e3e45f  numpy-1.22.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a906c0b4301a3d62ccf66d058fe779a65c1c34f6719ef2058f96e1856f48bca5  numpy-1.22.3.tar.gz
dbc7601a3b7472d559dc7b933b18b4b66f9aa7452c120e87dfb33d02008c8a18  numpy-1.22.3.zip

v1.22.2

Compare Source

NumPy 1.22.2 Release Notes

The NumPy 1.22.2 is maintenance release that fixes bugs discovered after the 1.22.1 release. Notable fixes are:

  • Several build related fixes for downstream projects and other platforms.
  • Various Annotation fixes/additions.
  • Numpy wheels for Windows will use the 1.41 tool chain, fixing downstream link problems for projects using NumPy provided libraries on Windows.
  • Deal with CVE-2021-41495 complaint.

The Python versions supported for this release are 3.8-3.10.

Contributors

A total of 14 people contributed to this release. People with a "+" by their names contributed a patch for the first time.

  • Andrew J. Hesford +
  • Bas van Beek
  • BrΓ©nainn Woodsend +
  • Charles Harris
  • Hood Chatham
  • Janus Heide +
  • Leo Singer
  • Matti Picus
  • Mukulika Pahari
  • Niyas Sait
  • Pearu Peterson
  • Ralf Gommers
  • Sebastian Berg
  • Serge Guelton

Pull requests merged

A total of 21 pull requests were merged for this release.

  • #​20842: BLD: Add NPY_DISABLE_SVML env var to opt out of SVML
  • #​20843: BUG: Fix build of third party extensions with Py_LIMITED_API
  • #​20844: TYP: Fix pyright being unable to infer the real and imag...
  • #​20845: BUG: Fix comparator function signatures
  • #​20906: BUG: Avoid importing numpy.distutils on import numpy.testing
  • #​20907: MAINT: remove outdated mingw32 fseek support
  • #​20908: TYP: Relax the return type of np.vectorize
  • #​20909: BUG: fix f2py's define for threading when building with Mingw
  • #​20910: BUG: distutils: fix building mixed C/Fortran extensions
  • #​20912: DOC,TST: Fix Pandas code example as per new release
  • #​20935: TYP, MAINT: Add annotations for flatiter.__setitem__
  • #​20936: MAINT, TYP: Added missing where typehints in fromnumeric.pyi
  • #​20937: BUG: Fix build_ext interaction with non numpy extensions
  • #​20938: BUG: Fix missing intrinsics for windows/arm64 target
  • #​20945: REL: Prepare for the NumPy 1.22.2 release.
  • #​20982: MAINT: f2py: don't generate code that triggers -Wsometimes-uninitialized.
  • #​20983: BUG: Fix incorrect return type in reduce without initial value
  • #​20984: ENH: review return values for PyArray_DescrNew
  • #​20985: MAINT: be more tolerant of setuptools >= 60
  • #​20986: BUG: Fix misplaced return.
  • #​20992: MAINT: Further small return value validation fixes

Checksums

MD5
2319f8d7c629d0ba3d3d3b1d5605d494  numpy-1.22.2-cp310-cp310-macosx_10_14_x86_64.whl
023c01a6d3aa528f8e88b0837dcab7ed  numpy-1.22.2-cp310-cp310-macosx_11_0_arm64.whl
84b36e8893b811d17a19404c68db7ce6  numpy-1.22.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
744da9614e8272a384b542d129cd17a9  numpy-1.22.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ee012ed5e7c98c6f48026dfa818b2274  numpy-1.22.2-cp310-cp310-win_amd64.whl
73e4fdcf398327bc4241dc38b6d10211  numpy-1.22.2-cp38-cp38-macosx_10_14_x86_64.whl
9fcbca2a614af3b9a37456643ab1c99d  numpy-1.22.2-cp38-cp38-macosx_11_0_arm64.whl
b7e0d4a19867d33765c7187d1390eef4  numpy-1.22.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dc8d79d75588737ea77fe85a4f05365a  numpy-1.22.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
05906141c095148c53c043c381e6fabe  numpy-1.22.2-cp38-cp38-win32.whl
05d3b6d34c0fa031e69ec0476e8d4c9c  numpy-1.22.2-cp38-cp38-win_amd64.whl
1449889d856de0e88437fa76d3284e00  numpy-1.22.2-cp39-cp39-macosx_10_14_x86_64.whl
e25666ab6ec0692368f328b7b98c27a3  numpy-1.22.2-cp39-cp39-macosx_11_0_arm64.whl
59e3013894bcc6267054c746d9339cf8  numpy-1.22.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7606b9898c20d2b2aa7fc7018bc9c5cd  numpy-1.22.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2686a1495c620e85842967bf8a5f1b2f  numpy-1.22.2-cp39-cp39-win32.whl
54432a84807ab69ac3432e6090d5a169  numpy-1.22.2-cp39-cp39-win_amd64.whl
4dbecace42595742485b854b213341b6  numpy-1.22.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5b506b01ef454f39272ca75de1c7f61c  numpy-1.22.2.tar.gz
a903008d992b77cb68129173c0f61f60  numpy-1.22.2.zip
SHA256
515a8b6edbb904594685da6e176ac9fbea8f73a5ebae947281de6613e27f1956  numpy-1.22.2-cp310-cp310-macosx_10_14_x86_64.whl
76a4f9bce0278becc2da7da3b8ef854bed41a991f4226911a24a9711baad672c  numpy-1.22.2-cp310-cp310-macosx_11_0_arm64.whl
168259b1b184aa83a514f307352c25c56af111c269ffc109d9704e81f72e764b  numpy-1.22.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3556c5550de40027d3121ebbb170f61bbe19eb639c7ad0c7b482cd9b560cd23b  numpy-1.22.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
aafa46b5a39a27aca566198d3312fb3bde95ce9677085efd02c86f7ef6be4ec7  numpy-1.22.2-cp310-cp310-win_amd64.whl
55535c7c2f61e2b2fc817c5cbe1af7cb907c7f011e46ae0a52caa4be1f19afe2  numpy-1.22.2-cp38-cp38-macosx_10_14_x86_64.whl
60cb8e5933193a3cc2912ee29ca331e9c15b2da034f76159b7abc520b3d1233a  numpy-1.22.2-cp38-cp38-macosx_11_0_arm64.whl
0b536b6840e84c1c6a410f3a5aa727821e6108f3454d81a5cd5900999ef04f89  numpy-1.22.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2638389562bda1635b564490d76713695ff497242a83d9b684d27bb4a6cc9d7a  numpy-1.22.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6767ad399e9327bfdbaa40871be4254d1995f4a3ca3806127f10cec778bd9896  numpy-1.22.2-cp38-cp38-win32.whl
03ae5850619abb34a879d5f2d4bb4dcd025d6d8fb72f5e461dae84edccfe129f  numpy-1.22.2-cp38-cp38-win_amd64.whl
d76a26c5118c4d96e264acc9e3242d72e1a2b92e739807b3b69d8d47684b6677  numpy-1.22.2-cp39-cp39-macosx_10_14_x86_64.whl
15efb7b93806d438e3bc590ca8ef2f953b0ce4f86f337ef4559d31ec6cf9d7dd  numpy-1.22.2-cp39-cp39-macosx_11_0_arm64.whl
badca914580eb46385e7f7e4e426fea6de0a37b9e06bec252e481ae7ec287082  numpy-1.22.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
94dd11d9f13ea1be17bac39c1942f527cbf7065f94953cf62dfe805653da2f8f  numpy-1.22.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8cf33634b60c9cef346663a222d9841d3bbbc0a2f00221d6bcfd0d993d5543f6  numpy-1.22.2-cp39-cp39-win32.whl
59153979d60f5bfe9e4c00e401e24dfe0469ef8da6d68247439d3278f30a180f  numpy-1.22.2-cp39-cp39-win_amd64.whl
4a176959b6e7e00b5a0d6f549a479f869829bfd8150282c590deee6d099bbb6e  numpy-1.22.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
093d513a460fd94f94c16193c3ef29b2d69a33e482071e3d6d6e561a700587a6  numpy-1.22.2.tar.gz
076aee5a3763d41da6bef9565fdf3cb987606f567cd8b104aded2b38b7b47abf  numpy-1.22.2.zip

Configuration

πŸ“… Schedule: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

β™» Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

πŸ”• Ignore: Close this PR and you won't be reminded about this update again.


  • [ ] If you want to rebase/retry this PR, click this checkbox.

This PR has been generated by Mend Renovate. View repository job log here.

renovate[bot] avatar Feb 04 '22 03:02 renovate[bot]