prompt-to-prompt
prompt-to-prompt copied to clipboard
TypeError: getattr(): attribute name must be string from "null_text_w_ptp.ipynb" file
I am trying to run the jupyter file and third block give me the following error.
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False) MY_TOKEN = '' LOW_RESOURCE = False NUM_DDIM_STEPS = 50 GUIDANCE_SCALE = 7.5 MAX_NUM_WORDS = 77 device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') ldm_stable = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=MY_TOKEN, scheduler=scheduler).to(device) try: ldm_stable.disable_xformers_memory_efficient_attention() except AttributeError: print("Attribute disable_xformers_memory_efficient_attention() is missing") tokenizer = ldm_stable.tokenizer
TypeError Traceback (most recent call last) Cell In[3], line 8 6 MAX_NUM_WORDS = 77 7 device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') ----> 8 ldm_stable = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=MY_TOKEN, scheduler=scheduler).to(device) 9 try: 10 ldm_stable.disable_xformers_memory_efficient_attention()
File ~/anaconda3/envs/p2p/lib/python3.8/site-packages/diffusers/pipeline_utils.py:373, in DiffusionPipeline.from_pretrained(cls, pretrained_model_name_or_path, **kwargs) 370 if issubclass(class_obj, class_candidate): 371 load_method_name = importable_classes[class_name][1] --> 373 load_method = getattr(class_obj, load_method_name) 375 loading_kwargs = {} 376 if issubclass(class_obj, torch.nn.Module):
TypeError: getattr(): attribute name must be string
any comments?
All the other jupyter file works well.
- I also tried to bring Stable-diffusion v-2.1, and it also didn't work :(
You can try pip install diffusers==0.10.0 rather than 0.3.0
the problem is solved but it raise a new one
TypeError: PNDMScheduler.set_timesteps() got an unexpected keyword argument 'offset'
how should i fix it
It was working fine with diffusers==0.3.0 uptil recently
It's not working now, any potential fix?
the problem is solved but it raise a new one
TypeError: PNDMScheduler.set_timesteps() got an unexpected keyword argument 'offset'
how should i fix it
Yes i got the same issue. neither diffusers 0.3.0 or 0.10.0 could work
the problem is solved but it raise a new one
TypeError: PNDMScheduler.set_timesteps() got an unexpected keyword argument 'offset'
how should i fix it
Just omit line 163 and revise model.scheduler.set_timesteps
in ptp_utils.py
# set timesteps
# extra_set_kwargs = {"offset": 1}
# model.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
model.scheduler.set_timesteps(num_inference_steps)
just try this https://github.com/google/prompt-to-prompt/issues/29#issuecomment-1398825757