jax
jax copied to clipboard
'+ptx84' is not a recognized feature for this target (ignoring feature)
Description
After updating to Jax / Jaxlib 0.4.27, upon running code that imports normal Jax functions, I am presented with constant warnings of the following type,
'+ptx84' is not a recognized feature for this target (ignoring feature)
I don't know if it is relevant or not, but in the same virtual environment I have Pytorch 2.2.2 installed. With previous version of jax/jaxlib I have no problem.
System info (python version, jaxlib version, accelerator, etc.)
Linux Ubuntu 22.04 jax: 0.4.26 jaxlib: 0.4.26 numpy: 1.24.4 python: 3.10.12 (main, Jul 5 2023, 18:54:27) [GCC 11.2.0] NVIDIA-SMI 550.54.15 Driver Version: 550.54.15 CUDA Version: 12.4
I also ran into this issue. Downgrading jaxlib to 0.4.26 fixed it for me.
System info (python version, jaxlib version, accelerator, etc.)
jax: 0.4.27
jaxlib: 0.4.27
numpy: 1.26.4
python: 3.11.5 (main, Oct 25 2023, 16:19:59) [GCC 8.5.0 20210514 (Red Hat 8.5.0-20)]
jax.devices (1 total, 1 local): [cuda(id=0)]
process_count: 1
platform: uname_result(system='Linux', release='4.18.0-513.24.1.el8_9.x86_64', version='#1 SMP Thu Apr 4 18:13:02 UTC 2024', machine='x86_64')
$ nvidia-smi
Wed May 8 00:34:18 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.54.15 Driver Version: 550.54.15 CUDA Version: 12.4 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA H100 On | 00000000:9D:00.0 Off | 0 |
| N/A 36C P0 82W / 700W | 534MiB / 95830MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 0 N/A N/A 157152 C python 524MiB |
+-----------------------------------------------------------------------------------------+
For those experiencing this problem, can you please share the output of nvidia-smi
(if you didn't already) and pip list | grep nvidia
?
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.54.15 Driver Version: 550.54.15 CUDA Version: 12.4 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GeForce RTX 3090 Ti Off | 00000000:01:00.0 Off | Off |
| 0% 59C P2 128W / 450W | 2745MiB / 24564MiB | 19% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
| 1 NVIDIA GeForce RTX 3090 Ti Off | 00000000:21:00.0 Off | Off |
| 32% 57C P2 170W / 450W | 3453MiB / 24564MiB | 82% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
pip list | grep nvidia
=> Empty output (system CUDA)
> /usr/local/cuda-12.4/bin/nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Thu_Mar_28_02:18:24_PDT_2024
Cuda compilation tools, release 12.4, V12.4.131
Build cuda_12.4.r12.4/compiler.34097967_0
+-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 550.54.15 Driver Version: 550.54.15 CUDA Version: 12.4 | |-----------------------------------------+------------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+========================+======================| | 0 NVIDIA GeForce RTX 4090 Off | 00000000:01:00.0 On | Off | | 0% 47C P8 27W / 450W | 5934MiB / 24564MiB | 24% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+
pip list | grep nvidia => Empty output (system CUDA)
nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2024 NVIDIA Corporation Built on Thu_Mar_28_02:18:24_PDT_2024 Cuda compilation tools, release 12.4, V12.4.131 Build cuda_12.4.r12.4/compiler.34097967_0
The problem occurs when you have ptxas
from CUDA 12.4 in your path. An older version would work (e.g., pip install nvidia-nvcc-cu12
but pin the CUDA 12.3 version).
I'm experiencing the same issue, here's my output from nvidia-smi
and pip list | grep nvidia
(base) ➜ ~ nvidia-smi
Wed May 8 09:05:06 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.171.04 Driver Version: 535.171.04 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA GeForce RTX 4090 Off | 00000000:01:00.0 On | Off |
| 0% 47C P0 63W / 450W | 191MiB / 24564MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
| 0 N/A N/A 1525 G /usr/lib/xorg/Xorg 167MiB |
| 0 N/A N/A 1612 G /usr/bin/gnome-shell 14MiB |
+---------------------------------------------------------------------------------------+
(base) ➜ ~ pip list | grep nvidia
nvidia-cublas-cu12 12.1.3.1
nvidia-cuda-cupti-cu12 12.1.105
nvidia-cuda-nvcc-cu12 12.4.131
nvidia-cuda-nvrtc-cu12 12.1.105
nvidia-cuda-runtime-cu12 12.1.105
nvidia-cudnn-cu12 8.9.2.26
nvidia-cufft-cu12 11.0.2.54
nvidia-curand-cu12 10.3.2.106
nvidia-cusolver-cu12 11.4.5.107
nvidia-cusparse-cu12 12.1.0.106
nvidia-nccl-cu12 2.19.3
nvidia-nvjitlink-cu12 12.4.127
nvidia-nvtx-cu12 12.1.105
Also experiencing the same issue. Any specific fixes yet?
+---------------------------------------------------------------------------------------+ | NVIDIA-SMI 535.129.03 Driver Version: 535.129.03 CUDA Version: 12.2 | |-----------------------------------------+----------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+======================+======================| | 0 NVIDIA GeForce RTX 4090 On | 00000000:01:00.0 Off | Off | | 0% 31C P8 28W / 450W | 3MiB / 24564MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 1 NVIDIA GeForce RTX 4090 On | 00000000:24:00.0 Off | Off | | 0% 31C P8 24W / 450W | 3MiB / 24564MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 2 NVIDIA GeForce RTX 4090 On | 00000000:41:00.0 Off | Off | | 0% 31C P8 26W / 450W | 3MiB / 24564MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 3 NVIDIA GeForce RTX 4090 On | 00000000:61:00.0 Off | Off | | 0% 31C P8 23W / 450W | 3MiB / 24564MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 4 NVIDIA GeForce RTX 4090 On | 00000000:81:00.0 Off | Off | | 0% 31C P8 23W / 450W | 3MiB / 24564MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 5 NVIDIA GeForce RTX 4090 On | 00000000:A1:00.0 Off | Off | | 0% 29C P8 24W / 450W | 3MiB / 24564MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 6 NVIDIA GeForce RTX 4090 On | 00000000:C1:00.0 Off | Off | | 0% 30C P8 29W / 450W | 3MiB / 24564MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 7 NVIDIA GeForce RTX 4090 On | 00000000:E1:00.0 Off | Off | | 0% 31C P8 15W / 450W | 3MiB / 24564MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=======================================================================================| | No running processes found | +---------------------------------------------------------------------------------------+
nvidia-cublas-cu12 12.4.5.8 nvidia-cuda-cupti-cu12 12.4.127 nvidia-cuda-nvcc-cu12 12.4.131 nvidia-cuda-nvrtc-cu12 12.4.127 nvidia-cuda-runtime-cu12 12.4.127 nvidia-cudnn-cu12 8.9.7.29 nvidia-cufft-cu12 11.2.1.3 nvidia-cusolver-cu12 11.6.1.9 nvidia-cusparse-cu12 12.3.1.170 nvidia-nccl-cu12 2.21.5 nvidia-nvjitlink-cu12 12.4.127
This is now fixed in XLA upstream, but it needs a new release.
You can downgrade nvidia-cuda-nvcc-cu12
to the version from 12.3 to work around. Or downgrade jaxlib to 0.4.26.
What specific commands do I use to downgrade? Thank you!
Try:
pip install nvidia-cuda-nvcc-cu12==12.3.107
I have the same issue
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.78 Driver Version: 550.78 CUDA Version: 12.4 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA RTX 4000 SFF Ada ... Off | 00000000:01:00.0 Off | Off |
| 30% 37C P8 11W / 70W | 15291MiB / 20475MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 0 N/A N/A 1143328 C ...yenv/versions/3.10.9/bin/python3.10 15284MiB |
+-----------------------------------------------------------------------------------------+
Same issue here. I am sorry but my machine is in a local private network. I cannot paste nvidia-smi.
Ubuntu 22.04 NVIDIA driver 550.54.15 CUDA 12.4 (nvcc 12.4.131) installed on system Two RTX A6000
If you are OK with the previous version, pip uninstall jax jaxlib & pip install "jax[cuda12]"==0.4.26 would help.
We just released jax and jaxlib v0.4.28, which resolves this issue.
Well, I just built jax and jaxlib from source. Now this shows up: '+ptx85' is not a recognized feature for this target (ignoring feature)
This is on latest arch linux. Jaxlib was built using:
export TF_CUDA_PATHS=/opt/cuda
python ./build/build.py \
--bazel_options=--local_ram_resources=HOST_RAM*.2 \
--target_cpu_features=native\
--enable_cuda \
--use_clang \
--cuda_path=/opt/cuda \
--cudnn_path=/usr \
--cuda_compute_capabilities='7.5' \
--cuda_version='12.5' \
--cudnn_version='9.1.1'
$ pip list | grep nvidia
$ nvidia-smi
Tue Jun 4 17:50:33 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.78 Driver Version: 550.78 CUDA Version: 12.4 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GeForce RTX 2080 Ti Off | 00000000:65:00.0 On | N/A |
| 0% 44C P8 14W / 260W | 9106MiB / 11264MiB | 2% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Wed_Apr_17_19:19:55_PDT_2024
Cuda compilation tools, release 12.5, V12.5.40
Build cuda_12.5.r12.5/compiler.34177558_0