llama.cpp
llama.cpp copied to clipboard
Bug: Termux adreno 618 vulkan support
What happened?
u0_a227@localhost ~> ./llama.cpp/build/bin/llama-cli -m llama.cpp/models/Qwen2.5-0.5B-Instruct-Q4_K_M.gguf -p "You are a helpful assistant" -cnv -ngl 99 -t 8 -b 64 -tb 8 --ctx-size 4096 build: 3829 (44f59b43) with clang version 18.1.8 for aarch64-unknown-linux-android24 main: llama backend init main: load the model and apply lora adapter, if any llama_model_loader: loaded meta data with 38 key-value pairs and 290 tensors from llama.cpp/models/Qwen2.5-0.5B-Instruct-Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = qwen2 llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = Qwen2.5 0.5B Instruct llama_model_loader: - kv 3: general.finetune str = Instruct llama_model_loader: - kv 4: general.basename str = Qwen2.5 llama_model_loader: - kv 5: general.size_label str = 0.5B llama_model_loader: - kv 6: general.license str = apache-2.0 llama_model_loader: - kv 7: general.license.link str = https://huggingface.co/Qwen/Qwen2.5-0... llama_model_loader: - kv 8: general.base_model.count u32 = 1 llama_model_loader: - kv 9: general.base_model.0.name str = Qwen2.5 0.5B llama_model_loader: - kv 10: general.base_model.0.organization str = Qwen llama_model_loader: - kv 11: general.base_model.0.repo_url str = https://huggingface.co/Qwen/Qwen2.5-0.5B llama_model_loader: - kv 12: general.tags arr[str,2] = ["chat", "text-generation"] llama_model_loader: - kv 13: general.languages arr[str,1] = ["en"] llama_model_loader: - kv 14: qwen2.block_count u32 = 24 llama_model_loader: - kv 15: qwen2.context_length u32 = 32768 llama_model_loader: - kv 16: qwen2.embedding_length u32 = 896 llama_model_loader: - kv 17: qwen2.feed_forward_length u32 = 4864 llama_model_loader: - kv 18: qwen2.attention.head_count u32 = 14 llama_model_loader: - kv 19: qwen2.attention.head_count_kv u32 = 2 llama_model_loader: - kv 20: qwen2.rope.freq_base f32 = 1000000.000000 llama_model_loader: - kv 21: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001 llama_model_loader: - kv 22: general.file_type u32 = 15 llama_model_loader: - kv 23: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 24: tokenizer.ggml.pre str = qwen2 llama_model_loader: - kv 25: tokenizer.ggml.tokens arr[str,151936] = ["!", """, "#", "$", "%", "&", "'", ... llama_model_loader: - kv 26: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... llama_model_loader: - kv 27: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",... llama_model_loader: - kv 28: tokenizer.ggml.eos_token_id u32 = 151645 llama_model_loader: - kv 29: tokenizer.ggml.padding_token_id u32 = 151643 llama_model_loader: - kv 30: tokenizer.ggml.bos_token_id u32 = 151643 llama_model_loader: - kv 31: tokenizer.ggml.add_bos_token bool = false llama_model_loader: - kv 32: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>... llama_model_loader: - kv 33: general.quantization_version u32 = 2 llama_model_loader: - kv 34: quantize.imatrix.file str = /models_out/Qwen2.5-0.5B-Instruct-GGU... llama_model_loader: - kv 35: quantize.imatrix.dataset str = /training_dir/calibration_datav3.txt llama_model_loader: - kv 36: quantize.imatrix.entries_count i32 = 168 llama_model_loader: - kv 37: quantize.imatrix.chunks_count i32 = 128 llama_model_loader: - type f32: 121 tensors llama_model_loader: - type q5_0: 132 tensors llama_model_loader: - type q8_0: 13 tensors llama_model_loader: - type q4_K: 12 tensors llama_model_loader: - type q6_K: 12 tensors llm_load_vocab: special tokens cache size = 22 llm_load_vocab: token to piece cache size = 0.9310 MB llm_load_print_meta: format = GGUF V3 (latest) llm_load_print_meta: arch = qwen2 llm_load_print_meta: vocab type = BPE llm_load_print_meta: n_vocab = 151936 llm_load_print_meta: n_merges = 151387 llm_load_print_meta: vocab_only = 0 llm_load_print_meta: n_ctx_train = 32768 llm_load_print_meta: n_embd = 896 llm_load_print_meta: n_layer = 24 llm_load_print_meta: n_head = 14 llm_load_print_meta: n_head_kv = 2 llm_load_print_meta: n_rot = 64 llm_load_print_meta: n_swa = 0 llm_load_print_meta: n_embd_head_k = 64 llm_load_print_meta: n_embd_head_v = 64 llm_load_print_meta: n_gqa = 7 llm_load_print_meta: n_embd_k_gqa = 128 llm_load_print_meta: n_embd_v_gqa = 128 llm_load_print_meta: f_norm_eps = 0.0e+00 llm_load_print_meta: f_norm_rms_eps = 1.0e-06 llm_load_print_meta: f_clamp_kqv = 0.0e+00 llm_load_print_meta: f_max_alibi_bias = 0.0e+00 llm_load_print_meta: f_logit_scale = 0.0e+00 llm_load_print_meta: n_ff = 4864 llm_load_print_meta: n_expert = 0 llm_load_print_meta: n_expert_used = 0 llm_load_print_meta: causal attn = 1 llm_load_print_meta: pooling type = 0 llm_load_print_meta: rope type = 2 llm_load_print_meta: rope scaling = linear llm_load_print_meta: freq_base_train = 1000000.0 llm_load_print_meta: freq_scale_train = 1 llm_load_print_meta: n_ctx_orig_yarn = 32768 llm_load_print_meta: rope_finetuned = unknown llm_load_print_meta: ssm_d_conv = 0 llm_load_print_meta: ssm_d_inner = 0 llm_load_print_meta: ssm_d_state = 0 llm_load_print_meta: ssm_dt_rank = 0 llm_load_print_meta: ssm_dt_b_c_rms = 0 llm_load_print_meta: model type = 1B llm_load_print_meta: model ftype = Q4_K - Medium llm_load_print_meta: model params = 494.03 M llm_load_print_meta: model size = 373.71 MiB (6.35 BPW) llm_load_print_meta: general.name = Qwen2.5 0.5B Instruct llm_load_print_meta: BOS token = 151643 '<|endoftext|>' llm_load_print_meta: EOS token = 151645 '<|im_end|>' llm_load_print_meta: PAD token = 151643 '<|endoftext|>' llm_load_print_meta: LF token = 148848 'ÄĬ' llm_load_print_meta: EOT token = 151645 '<|im_end|>' llm_load_print_meta: EOG token = 151643 '<|endoftext|>' llm_load_print_meta: EOG token = 151645 '<|im_end|>' llm_load_print_meta: max token length = 256 ggml_vulkan: Found 1 Vulkan devices: Vulkan0: Adreno (TM) 618 (Qualcomm Technologies Inc. Adreno Vulkan Driver) | uma: 1 | fp16: 0 | warp size: 64 ggml_vulkan: device Vulkan0 does not support 16-bit storage. llama_model_load: error loading model: Unsupported device llama_load_model_from_file: failed to load model llama_init_from_gpt_params: failed to load model 'llama.cpp/models/Qwen2.5-0.5B-Instruct-Q4_K_M.gguf' main: error: unable to load model fish: Job 1, './llama.cpp/build/bin/llama-cli…' terminated by signal SIGSEGV (Address boundary error)
Name and Version
build: 3829 (44f59b43) with clang version 18.1.8 for aarch64-unknown-linux-android24
What operating system are you seeing the problem on?
No response
Relevant log output
u0_a227@localhost ~> ./llama.cpp/build/bin/llama-cli -m llama.cpp/models/Qwen2.5-0.5B-Instruct-Q4_K_M.gguf -p "You are a helpful assistant" -cnv -ngl 99 -t 8 -b 64 -tb 8 --ctx-size 4096
build: 3829 (44f59b43) with clang version 18.1.8 for aarch64-unknown-linux-android24
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_loader: loaded meta data with 38 key-value pairs and 290 tensors from llama.cpp/models/Qwen2.5-0.5B-Instruct-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen2.5 0.5B Instruct
llama_model_loader: - kv 3: general.finetune str = Instruct
llama_model_loader: - kv 4: general.basename str = Qwen2.5
llama_model_loader: - kv 5: general.size_label str = 0.5B
llama_model_loader: - kv 6: general.license str = apache-2.0
llama_model_loader: - kv 7: general.license.link str = https://huggingface.co/Qwen/Qwen2.5-0...
llama_model_loader: - kv 8: general.base_model.count u32 = 1
llama_model_loader: - kv 9: general.base_model.0.name str = Qwen2.5 0.5B
llama_model_loader: - kv 10: general.base_model.0.organization str = Qwen
llama_model_loader: - kv 11: general.base_model.0.repo_url str = https://huggingface.co/Qwen/Qwen2.5-0.5B
llama_model_loader: - kv 12: general.tags arr[str,2] = ["chat", "text-generation"]
llama_model_loader: - kv 13: general.languages arr[str,1] = ["en"]
llama_model_loader: - kv 14: qwen2.block_count u32 = 24
llama_model_loader: - kv 15: qwen2.context_length u32 = 32768
llama_model_loader: - kv 16: qwen2.embedding_length u32 = 896
llama_model_loader: - kv 17: qwen2.feed_forward_length u32 = 4864
llama_model_loader: - kv 18: qwen2.attention.head_count u32 = 14
llama_model_loader: - kv 19: qwen2.attention.head_count_kv u32 = 2
llama_model_loader: - kv 20: qwen2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 21: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 22: general.file_type u32 = 15
llama_model_loader: - kv 23: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 24: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 25: tokenizer.ggml.tokens arr[str,151936] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 26: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 27: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 28: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 29: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 30: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 31: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 32: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>...
llama_model_loader: - kv 33: general.quantization_version u32 = 2
llama_model_loader: - kv 34: quantize.imatrix.file str = /models_out/Qwen2.5-0.5B-Instruct-GGU...
llama_model_loader: - kv 35: quantize.imatrix.dataset str = /training_dir/calibration_datav3.txt
llama_model_loader: - kv 36: quantize.imatrix.entries_count i32 = 168
llama_model_loader: - kv 37: quantize.imatrix.chunks_count i32 = 128
llama_model_loader: - type f32: 121 tensors
llama_model_loader: - type q5_0: 132 tensors
llama_model_loader: - type q8_0: 13 tensors
llama_model_loader: - type q4_K: 12 tensors
llama_model_loader: - type q6_K: 12 tensors
llm_load_vocab: special tokens cache size = 22
llm_load_vocab: token to piece cache size = 0.9310 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = qwen2
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 151936
llm_load_print_meta: n_merges = 151387
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 32768
llm_load_print_meta: n_embd = 896
llm_load_print_meta: n_layer = 24
llm_load_print_meta: n_head = 14
llm_load_print_meta: n_head_kv = 2
llm_load_print_meta: n_rot = 64
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 64
llm_load_print_meta: n_embd_head_v = 64
llm_load_print_meta: n_gqa = 7
llm_load_print_meta: n_embd_k_gqa = 128
llm_load_print_meta: n_embd_v_gqa = 128
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 4864
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 2
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 32768
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = 1B
llm_load_print_meta: model ftype = Q4_K - Medium
llm_load_print_meta: model params = 494.03 M
llm_load_print_meta: model size = 373.71 MiB (6.35 BPW)
llm_load_print_meta: general.name = Qwen2.5 0.5B Instruct
llm_load_print_meta: BOS token = 151643 '<|endoftext|>'
llm_load_print_meta: EOS token = 151645 '<|im_end|>'
llm_load_print_meta: PAD token = 151643 '<|endoftext|>'
llm_load_print_meta: LF token = 148848 'ÄĬ'
llm_load_print_meta: EOT token = 151645 '<|im_end|>'
llm_load_print_meta: EOG token = 151643 '<|endoftext|>'
llm_load_print_meta: EOG token = 151645 '<|im_end|>'
llm_load_print_meta: max token length = 256
ggml_vulkan: Found 1 Vulkan devices:
Vulkan0: Adreno (TM) 618 (Qualcomm Technologies Inc. Adreno Vulkan Driver) | uma: 1 | fp16: 0 | warp size: 64
ggml_vulkan: device Vulkan0 does not support 16-bit storage.
llama_model_load: error loading model: Unsupported device
llama_load_model_from_file: failed to load model
llama_init_from_gpt_params: failed to load model 'llama.cpp/models/Qwen2.5-0.5B-Instruct-Q4_K_M.gguf'
main: error: unable to load model
fish: Job 1, './llama.cpp/build/bin/llama-cli…' terminated by signal SIGSEGV (Address boundary error)