llama.cpp
llama.cpp copied to clipboard
Bug: igpu
What happened?
C:\Users\ArabTech\Desktop\5\LlamaCppExe>C:/Users/ArabTech/Desktop/5\LlamaCppExe/llama-cli -m C:/Users/ArabTech/Desktop/5/phi-3.5-mini-instruct-q4_k_m.gguf -p "Who is Napoleon Bonaparte?" --gpu-layers 30 --no-mmap -t 2 warning: not compiled with GPU offload support, --gpu-layers option will be ignored warning: see main README.md for information on enabling GPU BLAS support Log start main: build = 3618 (3ba780e2)
Name and Version
last
What operating system are you seeing the problem on?
No response
Relevant log output
C:\Users\ArabTech\Desktop\5\LlamaCppExe>C:/Users/ArabTech/Desktop/5\LlamaCppExe/llama-cli -m C:/Users/ArabTech/Desktop/5/phi-3.5-mini-instruct-q4_k_m.gguf -p "Who is Napoleon Bonaparte?" --gpu-layers 30 --no-mmap -t 2
warning: not compiled with GPU offload support, --gpu-layers option will be ignored
warning: see main README.md for information on enabling GPU BLAS support
Log start
main: build = 3618 (3ba780e2)
main: built with MSVC 19.41.34120.0 for x64
main: seed = 1724457404
llama_model_loader: loaded meta data with 36 key-value pairs and 197 tensors from C:/Users/ArabTech/Desktop/5/phi-3.5-mini-instruct-q4_k_m.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = phi3
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Phi 3.5 Mini Instruct
llama_model_loader: - kv 3: general.finetune str = instruct
llama_model_loader: - kv 4: general.basename str = Phi-3.5
llama_model_loader: - kv 5: general.size_label str = mini
llama_model_loader: - kv 6: general.license str = mit
llama_model_loader: - kv 7: general.license.link str = https://huggingface.co/microsoft/Phi-...
llama_model_loader: - kv 8: general.tags arr[str,3] = ["nlp", "code", "text-generation"]
llama_model_loader: - kv 9: general.languages arr[str,1] = ["multilingual"]
llama_model_loader: - kv 10: phi3.context_length u32 = 131072
llama_model_loader: - kv 11: phi3.rope.scaling.original_context_length u32 = 4096
llama_model_loader: - kv 12: phi3.embedding_length u32 = 3072
llama_model_loader: - kv 13: phi3.feed_forward_length u32 = 8192
llama_model_loader: - kv 14: phi3.block_count u32 = 32
llama_model_loader: - kv 15: phi3.attention.head_count u32 = 32
llama_model_loader: - kv 16: phi3.attention.head_count_kv u32 = 32
llama_model_loader: - kv 17: phi3.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 18: phi3.rope.dimension_count u32 = 96
llama_model_loader: - kv 19: phi3.rope.freq_base f32 = 10000.000000
llama_model_loader: - kv 20: general.file_type u32 = 15
llama_model_loader: - kv 21: phi3.attention.sliding_window u32 = 262144
llama_model_loader: - kv 22: phi3.rope.scaling.attn_factor f32 = 1.190238
llama_model_loader: - kv 23: tokenizer.ggml.model str = llama
llama_model_loader: - kv 24: tokenizer.ggml.pre str = default
llama_model_loader: - kv 25: tokenizer.ggml.tokens arr[str,32064] = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv 26: tokenizer.ggml.scores arr[f32,32064] = [-1000.000000, -1000.000000, -1000.00...
llama_model_loader: - kv 27: tokenizer.ggml.token_type arr[i32,32064] = [3, 3, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv 28: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 29: tokenizer.ggml.eos_token_id u32 = 32000
llama_model_loader: - kv 30: tokenizer.ggml.unknown_token_id u32 = 0
llama_model_loader: - kv 31: tokenizer.ggml.padding_token_id u32 = 32000
llama_model_loader: - kv 32: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 33: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 34: tokenizer.chat_template str = {% for message in messages %}{% if me...
llama_model_loader: - kv 35: general.quantization_version u32 = 2
llama_model_loader: - type f32: 67 tensors
llama_model_loader: - type q4_K: 81 tensors
llama_model_loader: - type q5_K: 32 tensors
llama_model_loader: - type q6_K: 17 tensors
llm_load_vocab: special tokens cache size = 14
llm_load_vocab: token to piece cache size = 0.1685 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = phi3
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32064
llm_load_print_meta: n_merges = 0
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 131072
llm_load_print_meta: n_embd = 3072
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_rot = 96
llm_load_print_meta: n_swa = 262144
llm_load_print_meta: n_embd_head_k = 96
llm_load_print_meta: n_embd_head_v = 96
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 3072
llm_load_print_meta: n_embd_v_gqa = 3072
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 8192
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 2
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 4096
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = 3B
llm_load_print_meta: model ftype = Q4_K - Medium
llm_load_print_meta: model params = 3.82 B
llm_load_print_meta: model size = 2.23 GiB (5.01 BPW)
llm_load_print_meta: general.name = Phi 3.5 Mini Instruct
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 32000 '<|endoftext|>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: PAD token = 32000 '<|endoftext|>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_print_meta: EOT token = 32007 '<|end|>'
llm_load_print_meta: max token length = 48
llm_load_tensors: ggml ctx size = 0.10 MiB
llm_load_tensors: CPU buffer size = 2281.67 MiB
............................................................................................
llama_new_context_with_model: n_ctx = 131072
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CPU KV buffer size = 49152.00 MiB
llama_new_context_with_model: KV self size = 49152.00 MiB, K (f16): 24576.00 MiB, V (f16): 24576.00 MiB
llama_new_context_with_model: CPU output buffer size = 0.12 MiB
llama_new_context_with_model: CPU compute buffer size = 8484.01 MiB
llama_new_context_with_model: graph nodes = 1286
llama_new_context_with_model: graph splits = 1
system_info: n_threads = 2 / 28 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
sampling:
repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampling order:
CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temperature
generate: n_ctx = 131072, n_batch = 2048, n_predict = -1, n_keep = 0
Who is Napoleon Bonaparte? Napoleon Bonaparte is a famous French military leader and political leader who rose to power during the French Revolution and became the Emperor of France. Born on Corsica in 1769, Napoleon led many
llama_print_timings: load time = 10388.70 ms
llama_print_timings: sample time = 0.92 ms / 43 runs ( 0.02 ms per token, 46637.74 tokens per second)
llama_print_timings: prompt eval time = 357.89 ms / 7 tokens ( 51.13 ms per token, 19.56 tokens per second)
llama_print_timings: eval time = 3391.20 ms / 42 runs ( 80.74 ms per token, 12.39 tokens per second)
llama_print_timings: total time = 3819.72 ms / 49 tokens
C:\Users\ArabTech\Desktop\5\LlamaCppExe>