llama.cpp
llama.cpp copied to clipboard
Bug: llama-cli out "error: input is empty" and end
What happened?
my run u:\llama\llama.cpp\build\bin\llama-cli.exe -mli -co -fa -ngl 64 -cnv --chat-template gemma -m llama3-8B-Chinese-Chat-q8.gguf
win11 amd 7900x hip 6.1 vs 2022 cmake -DGGML_OPENMP=OFF -DGGML_BUILD_EXAMPLES=OFF -DGGML_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1100 -DCMAKE_C_COMPILER=D:/AMD/ROCm/6.1/bin/clang.exe -DCMAKE_CXX_COMPILER=D:/AMD/ROCm/6.1/bin/clang++.exe
d:\AI_Model\ggml_llava>u:\llama\llama.cpp\build\bin\llama-cli.exe -m qwen2-7b-instruct-q5_k_m.gguf --chat-template llama2 Log start main: build = 0 (unknown) main: built with for x86_64-pc-windows-msvc main: seed = 1723317298 llama_model_loader: loaded meta data with 21 key-value pairs and 339 tensors from qwen2-7b-instruct-q5_k_m.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = qwen2 llama_model_loader: - kv 1: general.name str = qwen2-7b llama_model_loader: - kv 2: qwen2.block_count u32 = 28 llama_model_loader: - kv 3: qwen2.context_length u32 = 32768 llama_model_loader: - kv 4: qwen2.embedding_length u32 = 3584 llama_model_loader: - kv 5: qwen2.feed_forward_length u32 = 18944 llama_model_loader: - kv 6: qwen2.attention.head_count u32 = 28 llama_model_loader: - kv 7: qwen2.attention.head_count_kv u32 = 4 llama_model_loader: - kv 8: qwen2.rope.freq_base f32 = 1000000.000000 llama_model_loader: - kv 9: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001 llama_model_loader: - kv 10: general.file_type u32 = 17 llama_model_loader: - kv 11: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 12: tokenizer.ggml.pre str = qwen2 llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,152064] = ["!", """, "#", "$", "%", "&", "'", ... llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... llama_model_loader: - kv 15: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",... llama_model_loader: - kv 16: tokenizer.ggml.eos_token_id u32 = 151645 llama_model_loader: - kv 17: tokenizer.ggml.padding_token_id u32 = 151643 llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 151643 llama_model_loader: - kv 19: tokenizer.chat_template str = {% for message in messages %}{% if lo... llama_model_loader: - kv 20: general.quantization_version u32 = 2 llama_model_loader: - type f32: 141 tensors llama_model_loader: - type q5_K: 169 tensors llama_model_loader: - type q6_K: 29 tensors llm_load_vocab: special tokens cache size = 421 llm_load_vocab: token to piece cache size = 0.9352 MB llm_load_print_meta: format = GGUF V3 (latest) llm_load_print_meta: arch = qwen2 llm_load_print_meta: vocab type = BPE llm_load_print_meta: n_vocab = 152064 llm_load_print_meta: n_merges = 151387 llm_load_print_meta: vocab_only = 0 llm_load_print_meta: n_ctx_train = 32768 llm_load_print_meta: n_embd = 3584 llm_load_print_meta: n_layer = 28 llm_load_print_meta: n_head = 28 llm_load_print_meta: n_head_kv = 4 llm_load_print_meta: n_rot = 128 llm_load_print_meta: n_swa = 0 llm_load_print_meta: n_embd_head_k = 128 llm_load_print_meta: n_embd_head_v = 128 llm_load_print_meta: n_gqa = 7 llm_load_print_meta: n_embd_k_gqa = 512 llm_load_print_meta: n_embd_v_gqa = 512 llm_load_print_meta: f_norm_eps = 0.0e+00 llm_load_print_meta: f_norm_rms_eps = 1.0e-06 llm_load_print_meta: f_clamp_kqv = 0.0e+00 llm_load_print_meta: f_max_alibi_bias = 0.0e+00 llm_load_print_meta: f_logit_scale = 0.0e+00 llm_load_print_meta: n_ff = 18944 llm_load_print_meta: n_expert = 0 llm_load_print_meta: n_expert_used = 0 llm_load_print_meta: causal attn = 1 llm_load_print_meta: pooling type = 0 llm_load_print_meta: rope type = 2 llm_load_print_meta: rope scaling = linear llm_load_print_meta: freq_base_train = 1000000.0 llm_load_print_meta: freq_scale_train = 1 llm_load_print_meta: n_ctx_orig_yarn = 32768 llm_load_print_meta: rope_finetuned = unknown llm_load_print_meta: ssm_d_conv = 0 llm_load_print_meta: ssm_d_inner = 0 llm_load_print_meta: ssm_d_state = 0 llm_load_print_meta: ssm_dt_rank = 0 llm_load_print_meta: model type = ?B llm_load_print_meta: model ftype = Q5_K - Medium llm_load_print_meta: model params = 7.62 B llm_load_print_meta: model size = 5.07 GiB (5.71 BPW) llm_load_print_meta: general.name = qwen2-7b llm_load_print_meta: BOS token = 151643 '<|endoftext|>' llm_load_print_meta: EOS token = 151645 '<|im_end|>' llm_load_print_meta: PAD token = 151643 '<|endoftext|>' llm_load_print_meta: LF token = 148848 'ÄĬ' llm_load_print_meta: EOT token = 151645 '<|im_end|>' llm_load_print_meta: max token length = 256 ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no ggml_cuda_init: found 1 ROCm devices: Device 0: AMD Radeon RX 7900 XTX, compute capability 11.0, VMM: no llm_load_tensors: ggml ctx size = 0.15 MiB llm_load_tensors: offloading 0 repeating layers to GPU llm_load_tensors: offloaded 0/29 layers to GPU llm_load_tensors: CPU buffer size = 5186.92 MiB ....................................................................................... llama_new_context_with_model: n_ctx = 32768 llama_new_context_with_model: n_batch = 2048 llama_new_context_with_model: n_ubatch = 512 llama_new_context_with_model: flash_attn = 0 llama_new_context_with_model: freq_base = 1000000.0 llama_new_context_with_model: freq_scale = 1 llama_kv_cache_init: ROCm_Host KV buffer size = 1792.00 MiB llama_new_context_with_model: KV self size = 1792.00 MiB, K (f16): 896.00 MiB, V (f16): 896.00 MiB llama_new_context_with_model: ROCm_Host output buffer size = 0.58 MiB llama_new_context_with_model: ROCm0 compute buffer size = 1941.02 MiB llama_new_context_with_model: ROCm_Host compute buffer size = 71.01 MiB llama_new_context_with_model: graph nodes = 986 llama_new_context_with_model: graph splits = 396
system_info: n_threads = 16 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | error: input is empty
No more...
main.log
[1723317404] llama_new_context_with_model: graph splits = 2 [1723317404] warming up the model with an empty run [1723317404] n_ctx: 8192 [1723317404] main: chat template example: <start_of_turn>user You are a helpful assistant
Hello<end_of_turn> <start_of_turn>model Hi there<end_of_turn> <start_of_turn>user How are you?<end_of_turn> <start_of_turn>model
[1723317404] [1723317404] system_info: n_threads = 16 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | [1723317404] add_bos: 0 [1723317404] tokenize the prompt [1723317404] prompt: "" [1723317404] tokens: [ ] [1723317404] error: input is empty
Name and Version
D:\AI_Model\ggml_llava>u:\llama\llama.cpp\build\bin\llama-cli.exe --version version: 0 (unknown) built with for x86_64-pc-windows-msvc
git pull code for commit 6e02327e8b7837358e0406bf90a4632e18e27846 (HEAD -> master, tag: b3565, origin/master, origin/HEAD)
What operating system are you seeing the problem on?
Windows
Relevant log output
No response