llama.cpp icon indicating copy to clipboard operation
llama.cpp copied to clipboard

GGML_ASSERT with Vulkan backend and Mixtral 8x7B model

Open deiteris opened this issue 1 year ago • 4 comments

When attempting to load Mixtral 8x7B (Q4_K_M) model with Vulkan backend and any number of layers offloaded to GPU, it fails with GGML_ASSERT. It loads and works with all layers loaded on CPU and this doesn't happen with other models.

Specs

CPU: Ryzen 5 5800H RAM: DDR4 32GB GPU: Radeon RX 6600M 8GB OS: Windows 10 Pro 22H2

Logs

PS C:\Sources\llama.cpp\build\bin\Release> .\main.exe -m "C:\Temp\mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf" -ngl 1
Log start
main: build = 2116 (f026f812)
main: built with MSVC 19.38.33134.0 for x64
main: seed  = 1707603695
ggml_vulkan: Found 1 Vulkan devices:
Vulkan0: AMD Radeon RX 6600M | uma: 0 | fp16: 1 | warp size: 64
llama_model_loader: loaded meta data with 26 key-value pairs and 995 tensors from C:\Temp\mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = mistralai_mixtral-8x7b-instruct-v0.1
llama_model_loader: - kv   2:                       llama.context_length u32              = 32768
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   4:                          llama.block_count u32              = 32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 14336
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv   9:                         llama.expert_count u32              = 8
llama_model_loader: - kv  10:                    llama.expert_used_count u32              = 2
llama_model_loader: - kv  11:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  12:                       llama.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  13:                          general.file_type u32              = 15
llama_model_loader: - kv  14:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  15:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  16:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  17:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  18:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  19:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  20:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  21:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  22:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  23:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  24:                    tokenizer.chat_template str              = {{ bos_token }}{% for message in mess...
llama_model_loader: - kv  25:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type  f16:   32 tensors
llama_model_loader: - type q8_0:   64 tensors
llama_model_loader: - type q4_K:  833 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 32768
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 14336
llm_load_print_meta: n_expert         = 8
llm_load_print_meta: n_expert_used    = 2
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 32768
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = Q4_K - Medium
llm_load_print_meta: model params     = 46.70 B
llm_load_print_meta: model size       = 24.62 GiB (4.53 BPW)
llm_load_print_meta: general.name     = mistralai_mixtral-8x7b-instruct-v0.1
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: PAD token        = 0 '<unk>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.76 MiB
llm_load_tensors: offloading 1 repeating layers to GPU
llm_load_tensors: offloaded 1/33 layers to GPU
llm_load_tensors:        CPU buffer size = 25215.87 MiB
llm_load_tensors:    Vulkan0 buffer size =   782.59 MiB
....................................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: freq_base  = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: Vulkan_Host KV buffer size =    62.00 MiB
llama_kv_cache_init:    Vulkan0 KV buffer size =     2.00 MiB
llama_new_context_with_model: KV self size  =   64.00 MiB, K (f16):   32.00 MiB, V (f16):   32.00 MiB
llama_new_context_with_model: Vulkan_Host input buffer size   =     9.01 MiB
llama_new_context_with_model:    Vulkan0 compute buffer size =   118.83 MiB
llama_new_context_with_model: Vulkan_Host compute buffer size =   118.83 MiB
llama_new_context_with_model: graph splits (measure): 5
GGML_ASSERT: C:\Sources\llama.cpp\ggml-vulkan.cpp:2942: src1 == nullptr || ggml_vk_dim01_contiguous(src1)

deiteris avatar Feb 10 '24 22:02 deiteris

Mixtral is not yet supported on Vulkan.

0cc4m avatar Feb 11 '24 05:02 0cc4m

I have a very similar experience. Also AMD hardware. Please let us know when Vulkan Support is available in this issue. Thanks a lot

Bratzmeister avatar Feb 25 '24 17:02 Bratzmeister

No mixtral over vulkan, and hipBLAS version crashes on dual GPU's :(. Also super waiting for std::cerr << "ggml_vulkan: GGML_OP_MUL_MAT_ID not implemented yet." << std::endl; This to be resolved :)

morphles avatar Mar 21 '24 10:03 morphles

I'm on it. I hope to get Mixtral working on Vulkan soon. I got all the requirements done, I think.

0cc4m avatar Mar 21 '24 10:03 0cc4m

This issue was closed because it has been inactive for 14 days since being marked as stale.

github-actions[bot] avatar May 05 '24 01:05 github-actions[bot]