llama.cpp
llama.cpp copied to clipboard
CUDA/OpenCL error, out of memory when reload.
Hello folks,
When try save-load-state
example with CUDA, error occured.
It seems to necessary to add something toward llama_free
function.
n_gpu_layers
variable is appended at main function like below.
int main(int argc, char ** argv) {
...
auto lparams = llama_context_default_params();
lparams.n_ctx = params.n_ctx;
lparams.n_parts = params.n_parts;
lparams.n_gpu_layers = params.n_gpu_layers; // Add gpu layers count
lparams.seed = params.seed;
...
}
And tried to run as below.
D:\dev\pcbangstudio\workspace\my-llama\bin>save-load-state.exe -m ggml-vic7b-q4_0.bin -ngl 32
main: build = 548 (60f8c36)
llama.cpp: loading model from ggml-vic7b-q4_0.bin
llama_model_load_internal: format = ggjt v2 (latest)
llama_model_load_internal: n_vocab = 32000
llama_model_load_internal: n_ctx = 512
llama_model_load_internal: n_embd = 4096
llama_model_load_internal: n_mult = 256
llama_model_load_internal: n_head = 32
llama_model_load_internal: n_layer = 32
llama_model_load_internal: n_rot = 128
llama_model_load_internal: ftype = 2 (mostly Q4_0)
llama_model_load_internal: n_ff = 11008
llama_model_load_internal: n_parts = 1
llama_model_load_internal: model size = 7B
llama_model_load_internal: ggml ctx size = 72.75 KB
llama_model_load_internal: mem required = 5809.34 MB (+ 1026.00 MB per state)
llama_model_load_internal: [cublas] offloading 32 layers to GPU
llama_model_load_internal: [cublas] total VRAM used: 3860 MB
llama_init_from_file: kv self size = 256.00 MB
The quick brown fox jumps over the lazy dog.
<!-- InstanceEnd -->Visible transl
llama.cpp: loading model from ggml-vic7b-q4_0.bin
llama_model_load_internal: format = ggjt v2 (latest)
llama_model_load_internal: n_vocab = 32000
llama_model_load_internal: n_ctx = 512
llama_model_load_internal: n_embd = 4096
llama_model_load_internal: n_mult = 256
llama_model_load_internal: n_head = 32
llama_model_load_internal: n_layer = 32
llama_model_load_internal: n_rot = 128
llama_model_load_internal: ftype = 2 (mostly Q4_0)
llama_model_load_internal: n_ff = 11008
llama_model_load_internal: n_parts = 1
llama_model_load_internal: model size = 7B
llama_model_load_internal: ggml ctx size = 72.75 KB
llama_model_load_internal: mem required = 5809.34 MB (+ 1026.00 MB per state)
llama_model_load_internal: [cublas] offloading 32 layers to GPU
CUDA error 2 at D:\dev\pcbangstudio\workspace\my-llama\llama.cpp\ggml-cuda.cu:462: out of memory
D:\dev\pcbangstudio\workspace\my-llama\bin>
It seems that llama_free
is not releasing the memory used by the previously used weights.
I found all gpu malloc call cudaFree except ggml_cuda_transform_tensor
in ggml_cuda.cu
Is there reason to leave qkv layers
in state of allocated?
For some reason, I was having this problem but I solved it by killing the task TabNine-deep-local.exe. That might have been local to my computer, but if your GPU is holding onto the memory, try closing some of the processes.
@bfrasure What is TabNine? If it means code assistant application which you said, I don't use it.
It's an extension I loaded with VSCode. Looking further, I don't think it's related.
I could deallocate the gpu offloaded parts by llama_free() modifying. #1459 for clblast, a pr which is not accepted yet is working but #1412 for cuda is not woking.
I wanted to bring more attention to this issue, @JohannesGaessler, as downstream packages are being affected by offloaded layers not being cleaned from GPU VRAM.
I can't reproduce the issue. In any case. if I had to guess the problem is not that the cuda buffers for the model weights aren't being deallocated but rather that they are getting allocated multiple times. I will soon make a PR that overhauls the CUDA code to make it more scalable and I'll try to include a fix then.
Using the python bindings on Linux, this snippet was able to reproduce the issue:
from llama_cpp import Llama
import gc
import os
def measure_resources(func):
def get_ram_usage(pid):
ram = os.popen(f'pmap {pid} | tail -1').read().strip()
return ram.split(' ')[-1]
def get_gpu_usage(pid):
gpu = os.popen(f'nvidia-smi --query-compute-apps=pid,used_memory --format=csv | grep {pid}').read().strip()
return gpu.split(', ')[-1] if gpu else '0 MiB'
def wrapper():
pid = os.getpid()
print('pid:', pid)
pre_ram, pre_gpu = get_ram_usage(pid), get_gpu_usage(pid)
print('pre_ram:', pre_ram, 'pre_gpu:', pre_gpu)
func()
post_ram, post_gpu = get_ram_usage(pid), get_gpu_usage(pid)
print('post_ram:', post_ram, 'post_gpu:', post_gpu)
return wrapper
@measure_resources
def generate_text():
llm = Llama(model_path=os.environ.get("MODEL"), n_gpu_layers=40)
del llm
gc.collect()
if __name__ == '__main__':
generate_text()
Output:
pid: 13121
pre_ram: 720676K pre_gpu: 0 MiB
llama.cpp: loading model from ./weights/oasst-30b.bin
llama_model_load_internal: format = ggjt v2 (latest)
llama_model_load_internal: n_vocab = 32016
llama_model_load_internal: n_ctx = 512
llama_model_load_internal: n_embd = 6656
llama_model_load_internal: n_mult = 256
llama_model_load_internal: n_head = 52
llama_model_load_internal: n_layer = 60
llama_model_load_internal: n_rot = 128
llama_model_load_internal: ftype = 9 (mostly Q5_1)
llama_model_load_internal: n_ff = 17920
llama_model_load_internal: n_parts = 1
llama_model_load_internal: model size = 30B
llama_model_load_internal: ggml ctx size = 135.75 KB
llama_model_load_internal: mem required = 25573.29 MB (+ 3124.00 MB per state)
llama_model_load_internal: [cublas] offloading 40 layers to GPU
llama_model_load_internal: [cublas] total VRAM used: 15307 MB
llama_init_from_file: kv self size = 780.00 MB
AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | VSX = 0 |
post_ram: 25209048K post_gpu: 16074 MiB
More info here.
Thanks for the code snippet, I can reproduce the issue now. I think I'll be able to fix it by adding a destructor to ggml_tensor
although deleting and then recreating LLama Python objects will still require you to load up VRAM every time.
I was able to fix this issue on my branch where I'm refactoring CUDA code.
#include "common.h"
#include "llama.h"
#include "build-info.h"
#include <vector>
#include <cstdio>
#include <chrono>
int main(int argc, char ** argv) {
gpt_params params;
params.seed = 42;
params.n_threads = 4;
params.repeat_last_n = 64;
params.prompt = "The quick brown fox";
if (gpt_params_parse(argc, argv, params) == false) {
return 1;
}
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
if (params.n_predict < 0) {
params.n_predict = 16;
}
auto lparams = llama_context_default_params();
lparams.n_ctx = params.n_ctx;
lparams.n_gpu_layers = params.n_gpu_layers; /** Here, I modified for gpu offload enabling */
lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16;
lparams.use_mmap = params.use_mmap;
lparams.use_mlock = params.use_mlock;
auto n_past = 0;
auto last_n_tokens_data = std::vector<llama_token>(params.repeat_last_n, 0);
// init
auto ctx = llama_init_from_file(params.model.c_str(), lparams);
auto tokens = std::vector<llama_token>(params.n_ctx);
auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), tokens.size(), true);
if (n_prompt_tokens < 1) {
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
return 1;
}
// evaluate prompt
llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past, params.n_threads);
last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens);
n_past += n_prompt_tokens;
const size_t state_size = llama_get_state_size(ctx);
uint8_t * state_mem = new uint8_t[state_size];
// Save state (rng, logits, embedding and kv_cache) to file
{
FILE *fp_write = fopen("dump_state.bin", "wb");
llama_copy_state_data(ctx, state_mem); // could also copy directly to memory mapped file
fwrite(state_mem, 1, state_size, fp_write);
fclose(fp_write);
}
// save state (last tokens)
const auto last_n_tokens_data_saved = std::vector<llama_token>(last_n_tokens_data);
const auto n_past_saved = n_past;
// first run
printf("\n%s", params.prompt.c_str());
for (auto i = 0; i < params.n_predict; i++) {
auto logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(ctx);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
auto next_token = llama_sample_token(ctx, &candidates_p);
auto next_token_str = llama_token_to_str(ctx, next_token);
last_n_tokens_data.push_back(next_token);
printf("%s", next_token_str);
if (llama_eval(ctx, &next_token, 1, n_past, params.n_threads)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
return 1;
}
n_past += 1;
}
printf("\n\n");
// free old model
llama_free(ctx);
// load new model
auto ctx2 = llama_init_from_file(params.model.c_str(), lparams);
// Load state (rng, logits, embedding and kv_cache) from file
{
FILE *fp_read = fopen("dump_state.bin", "rb");
if (state_size != llama_get_state_size(ctx2)) {
fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
return 1;
}
const size_t ret = fread(state_mem, 1, state_size, fp_read);
if (ret != state_size) {
fprintf(stderr, "\n%s : failed to read state\n", __func__);
return 1;
}
llama_set_state_data(ctx2, state_mem); // could also read directly from memory mapped file
fclose(fp_read);
}
delete[] state_mem;
// restore state (last tokens)
last_n_tokens_data = last_n_tokens_data_saved;
n_past = n_past_saved;
// second run
for (auto i = 0; i < params.n_predict; i++) {
auto logits = llama_get_logits(ctx2);
auto n_vocab = llama_n_vocab(ctx2);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
auto next_token = llama_sample_token(ctx2, &candidates_p);
auto next_token_str = llama_token_to_str(ctx2, next_token);
last_n_tokens_data.push_back(next_token);
printf("%s", next_token_str);
if (llama_eval(ctx2, &next_token, 1, n_past, params.n_threads)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
return 1;
}
n_past += 1;
}
printf("\n\n");
return 0;
}
Here is code I used.
D:\llama.cpp_test>save-load-state.exe -m vicuna-7B-1.1-ggml_q4_0-ggjt_v3.bin -ngl 32
main: build = 589 (1fcdcc2)
llama.cpp: loading model from vicuna-7B-1.1-ggml_q4_0-ggjt_v3.bin
llama_model_load_internal: format = ggjt v3 (latest)
llama_model_load_internal: n_vocab = 32000
llama_model_load_internal: n_ctx = 512
llama_model_load_internal: n_embd = 4096
llama_model_load_internal: n_mult = 256
llama_model_load_internal: n_head = 32
llama_model_load_internal: n_layer = 32
llama_model_load_internal: n_rot = 128
llama_model_load_internal: ftype = 2 (mostly Q4_0)
llama_model_load_internal: n_ff = 11008
llama_model_load_internal: n_parts = 1
llama_model_load_internal: model size = 7B
llama_model_load_internal: ggml ctx size = 0.07 MB
llama_model_load_internal: mem required = 1932.71 MB (+ 1026.00 MB per state)
llama_model_load_internal: [cublas] offloading 32 layers to GPU
llama_model_load_internal: [cublas] total VRAM used: 3475 MB
..................................................................................................
llama_init_from_file: kv self size = 256.00 MB
The quick brown fox jumps over the lazy dog.
<!-- InstanceEnd -->Visible transl
llama.cpp: loading model from vicuna-7B-1.1-ggml_q4_0-ggjt_v3.bin
llama_model_load_internal: format = ggjt v3 (latest)
llama_model_load_internal: n_vocab = 32000
llama_model_load_internal: n_ctx = 512
llama_model_load_internal: n_embd = 4096
llama_model_load_internal: n_mult = 256
llama_model_load_internal: n_head = 32
llama_model_load_internal: n_layer = 32
llama_model_load_internal: n_rot = 128
llama_model_load_internal: ftype = 2 (mostly Q4_0)
llama_model_load_internal: n_ff = 11008
llama_model_load_internal: n_parts = 1
llama_model_load_internal: model size = 7B
llama_model_load_internal: ggml ctx size = 0.07 MB
llama_model_load_internal: mem required = 1932.71 MB (+ 1026.00 MB per state)
llama_model_load_internal: [cublas] offloading 32 layers to GPU
llama_model_load_internal: [cublas] total VRAM used: 3475 MB
.........................................................................................CUDA error 2 at D:\dev\pcbangstudio\workspace\llama.cpp\ggml-cuda.cu:935: out of memory
D:\llama.cpp_test>
I tried vicuna 7b model which consume about 4gb vram on 3060ti 8gb also with #1530 .
llama_free
function works well for cpu ram.
For vram, still not work.
I added a fix in this PR https://github.com/ggerganov/llama.cpp/pull/1607 where I'm refactoring the CUDA code. However, I added a new CLI argument --tensor-split
and because of that the Python script that I used to reproduce the memory leak seems to now be broken:
ggml_init_cublas: found 1 CUDA devices:
1. NVIDIA GeForce RTX 3090
pid: 2070536
pre_ram: 8135808K pre_gpu: 628 MiB
Fatal Python error: PyEval_RestoreThread: the function must be called with the GIL held, but the GIL is released (the current Python thread state is NULL)
Python runtime state: initialized
Current thread 0x00007fdd557c3740 (most recent call first):
File "/home/johannesg/Projects/llama-cpp-python/llama_cpp/llama_cpp.py", line 207 in llama_context_default_params
File "/home/johannesg/Projects/llama-cpp-python/llama_cpp/llama.py", line 128 in __init__
File "/home/johannesg/Projects/llama.cpp/oom.py", line 29 in generate_text
File "/home/johannesg/Projects/llama.cpp/oom.py", line 21 in wrapper
File "/home/johannesg/Projects/llama.cpp/oom.py", line 34 in <module>
[1] 2070536 IOT instruction (core dumped) python3 oom.py
Can I easily fix this on my end or will llamacpp-python need to be updated?
I think llama-cpp-python needs to be updated. I briefly looked at the code that’s causing the error. Seems like we will need to update the default parameters being passed during initialization to llama.cpp. What do you think @gjmulder?
@JohannesGaessler It seems work for cuda. Does it also affect to opencl?
@nidhishs @JohannesGaessler, I believe @abetlen's policy is to expose all parameters that llama.cpp
exposes so they can be configured within python.
It is certainly required when doing apples-to-apples tests as we seem to be getting a number of "llama-cpp-python is slower than llama.cpp" issues.
~~Wait, I think I may have been using the wrong Python bindings. I was using this repository which worked for me to reproduce the bug. Can someone give me a quick rundown for the difference between this and abetlen's repository?~~
It seems work for cuda. Does it also affect to opencl?
I have not made any changes to OpenCL.
Disregard my previous post, I was using the correct repository.
Currently CUDA release vram usage well. Thank you @JohannesGaessler . @0cc4m I'm still looking forward for opencl but if you're busy, can I post a PR for this?
Go ahead, sure.
Ok, I will do it.
Done. @0cc4m thank you for acceptance.
Oh this is closed? That probably explains why I'm still waiting for the memory leak fix in llama-cpp-python 2 months later.
@iactix Yes, the leakage issues which I'v met atleast , were solved. If you still have problem, you can open another issue.