llama.cpp icon indicating copy to clipboard operation
llama.cpp copied to clipboard

Potential memory allocation leak

Open TheNexter opened this issue 9 months ago • 0 comments

Name and Version

docker exec -it llama-server ./llama-server --version

ggml_vulkan: Found 1 Vulkan devices: ggml_vulkan: 0 = AMD Radeon RX 6600 XT (RADV NAVI23) (radv) | uma: 0 | fp16: 1 | warp size: 32 | shared memory: 65536 | matrix cores: none version: 4943 (18b663d8) built with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu

Operating systems

Linux

Which llama.cpp modules do you know to be affected?

llama-server

Command line

--mlock or --flash-attn did not help with or without :(


services:
  llama-server:
    #image: ghcr.io/ggml-org/llama.cpp:server-vulkan
    image: llama-server
    container_name: llama-server
    devices:
      - /dev/dri/renderD128:/dev/dri/renderD128
      - /dev/dri/card1:/dev/dri/card1
    ports:
      - 8080:8080
    volumes:
      - ./Models:/Models
    entrypoint: /app/llama-server -m /Models/google_gemma-3-12b-it-Q4_K_M.gguf --port 8080 --ctx-size 16384 --gpu-layers 15 --temp 1.0 --top-k 64 --top-p 0.95 --mlock # --flash-attn
    restart: unless-stopped

Problem description & steps to reproduce

Hello guy, after few long prompt in different conversation, Gemma start to going VERY slow like 0.1 token/s and the M.2 is used at 100% in read even if my ram is not fully used and my vram too.

Potential memory allocation leak ? (i am very good to describe the problem, sorry 😄) As you can see in my RAM screen, memory "Commitée" is maybe the cause of the error because every time model reload (like i stop the container docker stop llama-server or kill the container docker rm -f llama-server) this memory "commitée" continue to be more and more huge

Here is the model load after few prompt RAM with only model load (not in generation) : Image

VRAM with only model load (not in generation) : Image

SSD M.2 (not in generation) : Image


During generation with the problem of ram after few prompt :

Image

RAM with only model load (in generation) : Image

VRAM with only model load (in generation) : Image

M.2 with only model load (in generation) : Image


After closing and reopening my computer session (ubuntu 24.10) before first model loading:

RAM with no model load : Image

VRAM with no model load : Image

M.2 with no model load : Image


After closing and reopening my computer session (ubuntu 24.10) with only first model (during generation) :

Speed : Image

RAM after reboot (in generation) : Image

VRAM after reboot (in generation) : Image

M.2 after reboot (in generation) : Image

First Bad Commit

No response

Relevant log output

After reboot without any problem generation :


ggml_vulkan: Found 1 Vulkan devices:
ggml_vulkan: 0 = AMD Radeon RX 6600 XT (RADV NAVI23) (radv) | uma: 0 | fp16: 1 | warp size: 32 | shared memory: 65536 | matrix cores: none
build: 4943 (18b663d8) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
system info: n_threads = 6, n_threads_batch = 6, total_threads = 12

system_info: n_threads = 6 (n_threads_batch = 6) / 12 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 | 

main: HTTP server is listening, hostname: 0.0.0.0, port: 8080, http threads: 11
main: loading model
srv    load_model: loading model '/Models/google_gemma-3-12b-it-Q4_K_M.gguf'
llama_model_load_from_file_impl: using device Vulkan0 (AMD Radeon RX 6600 XT (RADV NAVI23)) - 8176 MiB free
llama_model_loader: loaded meta data with 44 key-value pairs and 626 tensors from /Models/google_gemma-3-12b-it-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = gemma3
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Gemma 3 12b It
llama_model_loader: - kv   3:                           general.finetune str              = it
llama_model_loader: - kv   4:                           general.basename str              = gemma-3
llama_model_loader: - kv   5:                         general.size_label str              = 12B
llama_model_loader: - kv   6:                            general.license str              = gemma
llama_model_loader: - kv   7:                   general.base_model.count u32              = 1
llama_model_loader: - kv   8:                  general.base_model.0.name str              = Gemma 3 12b Pt
llama_model_loader: - kv   9:          general.base_model.0.organization str              = Google
llama_model_loader: - kv  10:              general.base_model.0.repo_url str              = https://huggingface.co/google/gemma-3...
llama_model_loader: - kv  11:                               general.tags arr[str,1]       = ["image-text-to-text"]
llama_model_loader: - kv  12:                      gemma3.context_length u32              = 131072
llama_model_loader: - kv  13:                    gemma3.embedding_length u32              = 3840
llama_model_loader: - kv  14:                         gemma3.block_count u32              = 48
llama_model_loader: - kv  15:                 gemma3.feed_forward_length u32              = 15360
llama_model_loader: - kv  16:                gemma3.attention.head_count u32              = 16
llama_model_loader: - kv  17:    gemma3.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  18:                gemma3.attention.key_length u32              = 256
llama_model_loader: - kv  19:              gemma3.attention.value_length u32              = 256
llama_model_loader: - kv  20:                      gemma3.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  21:            gemma3.attention.sliding_window u32              = 1024
llama_model_loader: - kv  22:             gemma3.attention.head_count_kv u32              = 8
llama_model_loader: - kv  23:                   gemma3.rope.scaling.type str              = linear
llama_model_loader: - kv  24:                 gemma3.rope.scaling.factor f32              = 8.000000
llama_model_loader: - kv  25:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  26:                         tokenizer.ggml.pre str              = default
llama_model_loader: - kv  27:                      tokenizer.ggml.tokens arr[str,262144]  = ["<pad>", "<eos>", "<bos>", "<unk>", ...
llama_model_loader: - kv  28:                      tokenizer.ggml.scores arr[f32,262144]  = [-1000.000000, -1000.000000, -1000.00...
llama_model_loader: - kv  29:                  tokenizer.ggml.token_type arr[i32,262144]  = [3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv  30:                tokenizer.ggml.bos_token_id u32              = 2
llama_model_loader: - kv  31:                tokenizer.ggml.eos_token_id u32              = 1
llama_model_loader: - kv  32:            tokenizer.ggml.unknown_token_id u32              = 3
llama_model_loader: - kv  33:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  34:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  35:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  36:                    tokenizer.chat_template str              = {{ bos_token }}\n{%- if messages[0]['r...
llama_model_loader: - kv  37:            tokenizer.ggml.add_space_prefix bool             = false
llama_model_loader: - kv  38:               general.quantization_version u32              = 2
llama_model_loader: - kv  39:                          general.file_type u32              = 15
llama_model_loader: - kv  40:                      quantize.imatrix.file str              = /models_out/gemma-3-12b-it-GGUF/googl...
llama_model_loader: - kv  41:                   quantize.imatrix.dataset str              = /training_dir/calibration_datav3.txt
llama_model_loader: - kv  42:             quantize.imatrix.entries_count i32              = 336
llama_model_loader: - kv  43:              quantize.imatrix.chunks_count i32              = 129
llama_model_loader: - type  f32:  289 tensors
llama_model_loader: - type q4_K:  288 tensors
llama_model_loader: - type q6_K:   49 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q4_K - Medium
print_info: file size   = 6.79 GiB (4.96 BPW) 
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 6414
load: token to piece cache size = 1.9446 MB
print_info: arch             = gemma3
print_info: vocab_only       = 0
print_info: n_ctx_train      = 131072
print_info: n_embd           = 3840
print_info: n_layer          = 48
print_info: n_head           = 16
print_info: n_head_kv        = 8
print_info: n_rot            = 256
print_info: n_swa            = 1024
print_info: n_swa_pattern    = 6
print_info: n_embd_head_k    = 256
print_info: n_embd_head_v    = 256
print_info: n_gqa            = 2
print_info: n_embd_k_gqa     = 2048
print_info: n_embd_v_gqa     = 2048
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 6.2e-02
print_info: n_ff             = 15360
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 2
print_info: rope scaling     = linear
print_info: freq_base_train  = 1000000.0
print_info: freq_scale_train = 0.125
print_info: n_ctx_orig_yarn  = 131072
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 12B
print_info: model params     = 11.77 B
print_info: general.name     = Gemma 3 12b It
print_info: vocab type       = SPM
print_info: n_vocab          = 262144
print_info: n_merges         = 0
print_info: BOS token        = 2 '<bos>'
print_info: EOS token        = 1 '<eos>'
print_info: EOT token        = 106 '<end_of_turn>'
print_info: UNK token        = 3 '<unk>'
print_info: PAD token        = 0 '<pad>'
print_info: LF token         = 248 '<0x0A>'
print_info: EOG token        = 1 '<eos>'
print_info: EOG token        = 106 '<end_of_turn>'
print_info: max token length = 48
load_tensors: loading model tensors, this can take a while... (mmap = true)
make_cpu_buft_list: disabling extra buffer types (i.e. repacking) since a GPU device is available
load_tensors: offloading 15 repeating layers to GPU
load_tensors: offloaded 15/49 layers to GPU
load_tensors:      Vulkan0 model buffer size =  1952.34 MiB
load_tensors:   CPU_Mapped model buffer size =  5003.78 MiB
............................warning: failed to mlock 832323584-byte buffer (after previously locking 0 bytes): Cannot allocate memory
Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).
..............................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 16384
llama_context: n_ctx_per_seq = 16384
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: freq_base     = 1000000.0
llama_context: freq_scale    = 0.125
llama_context: n_ctx_per_seq (16384) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context:        CPU  output buffer size =     1.00 MiB
init: kv_size = 16384, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 48, can_shift = 1
init:    Vulkan0 KV buffer size =  1920.00 MiB
init:        CPU KV buffer size =  4224.00 MiB
llama_context: KV self size  = 6144.00 MiB, K (f16): 3072.00 MiB, V (f16): 3072.00 MiB
llama_context:    Vulkan0 compute buffer size =  1314.53 MiB
llama_context: Vulkan_Host compute buffer size =    72.01 MiB
llama_context: graph nodes  = 2023
llama_context: graph splits = 565 (with bs=512), 4 (with bs=1)
common_init_from_params: setting dry_penalty_last_n to ctx_size = 16384
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv          init: initializing slots, n_slots = 1
slot         init: id  0 | task -1 | new slot n_ctx_slot = 16384
main: model loaded
main: chat template, chat_template: {{ bos_token }}
{%- if messages[0]['role'] == 'system' -%}
    {%- if messages[0]['content'] is string -%}
        {%- set first_user_prefix = messages[0]['content'] + '

' -%}
    {%- else -%}
        {%- set first_user_prefix = messages[0]['content'][0]['text'] + '

' -%}
    {%- endif -%}
    {%- set loop_messages = messages[1:] -%}
{%- else -%}
    {%- set first_user_prefix = "" -%}
    {%- set loop_messages = messages -%}
{%- endif -%}
{%- for message in loop_messages -%}
    {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
        {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
    {%- endif -%}
    {%- if (message['role'] == 'assistant') -%}
        {%- set role = "model" -%}
    {%- else -%}
        {%- set role = message['role'] -%}
    {%- endif -%}
    {{ '<start_of_turn>' + role + '
' + (first_user_prefix if loop.first else "") }}
    {%- if message['content'] is string -%}
        {{ message['content'] | trim }}
    {%- elif message['content'] is iterable -%}
        {%- for item in message['content'] -%}
            {%- if item['type'] == 'image' -%}
                {{ '<start_of_image>' }}
            {%- elif item['type'] == 'text' -%}
                {{ item['text'] | trim }}
            {%- endif -%}
        {%- endfor -%}
    {%- else -%}
        {{ raise_exception("Invalid content type") }}
    {%- endif -%}
    {{ '<end_of_turn>
' }}
{%- endfor -%}
{%- if add_generation_prompt -%}
    {{'<start_of_turn>model
'}}
{%- endif -%}
, example_format: '<start_of_turn>user
You are a helpful assistant

Hello<end_of_turn>
<start_of_turn>model
Hi there<end_of_turn>
<start_of_turn>user
How are you?<end_of_turn>
<start_of_turn>model
'
main: server is listening on http://0.0.0.0:8080 - starting the main loop
srv  update_slots: all slots are idle
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  params_from_: Chat format: Content-only
slot launch_slot_: id  0 | task 0 | processing task
slot update_slots: id  0 | task 0 | new prompt, n_ctx_slot = 16384, n_keep = 0, n_prompt_tokens = 438
slot update_slots: id  0 | task 0 | kv cache rm [0, end)
slot update_slots: id  0 | task 0 | prompt processing progress, n_past = 438, n_tokens = 438, progress = 1.000000
slot update_slots: id  0 | task 0 | prompt done, n_past = 438, n_tokens = 438
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
slot      release: id  0 | task 0 | stop processing: n_past = 1246, truncated = 0
slot print_timing: id  0 | task 0 | 
prompt eval time =    4265.06 ms /   438 tokens (    9.74 ms per token,   102.70 tokens per second)
       eval time =  147795.38 ms /   809 tokens (  182.69 ms per token,     5.47 tokens per second)
      total time =  152060.44 ms /  1247 tokens
srv  log_server_r: request: POST /v1/chat/completions 172.18.0.1 200
srv  update_slots: all slots are idle
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200



After few prompt with problem generation (log start by my previous and last request that didn't use M.2 to generate answer) :

srv  log_server_r: request: POST /v1/chat/completions 172.18.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  params_from_: Chat format: Content-only
slot launch_slot_: id  0 | task 16901 | processing task
slot update_slots: id  0 | task 16901 | new prompt, n_ctx_slot = 16384, n_keep = 0, n_prompt_tokens = 2014
slot update_slots: id  0 | task 16901 | kv cache rm [11, end)
slot update_slots: id  0 | task 16901 | prompt processing progress, n_past = 2014, n_tokens = 2003, progress = 0.994538
slot update_slots: id  0 | task 16901 | prompt done, n_past = 2014, n_tokens = 2003
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  cancel_tasks: cancel task, id_task = 16901
srv  log_server_r: request: POST /v1/chat/completions 172.18.0.1 200

TheNexter avatar Mar 23 '25 16:03 TheNexter