llama.cpp icon indicating copy to clipboard operation
llama.cpp copied to clipboard

Eval bug: MUSA error: operation not supported

Open yeungtuzi opened this issue 10 months ago • 3 comments

Name and Version

  1. ./llama-cli --version

ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no ggml_cuda_init: found 8 MUSA devices: Device 0: MTT S4000, compute capability 2.2, VMM: yes Device 1: MTT S4000, compute capability 2.2, VMM: yes Device 2: MTT S4000, compute capability 2.2, VMM: yes Device 3: MTT S4000, compute capability 2.2, VMM: yes Device 4: MTT S3000, compute capability 2.1, VMM: yes Device 5: MTT S3000, compute capability 2.1, VMM: yes Device 6: MTT S3000, compute capability 2.1, VMM: yes Device 7: MTT S3000, compute capability 2.1, VMM: yes version: 4749 (ee02ad02) built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu

Operating systems

Linux

GGML backends

Musa

Hardware

Hygon 7385x2 (32C x2) Moorethreads: S4000 x8 RAM: 512GB

Models

DeepSeek-R1-Distill-Qwen-32B-Q4_K_M

Problem description & steps to reproduce

  1. Command: ./llama-server -t 32 -c 8192 -fa -np 4 -m /root/DeepSeek-R1-Distill-Qwen-32B-GGUF/DeepSeek-R1-Distill-Qwen-32B-Q4_K_M.gguf -ngl 100 --no-warmup --port 100 86 --host 0.0.0.0 -v

First Bad Commit

No response

Relevant log output

3. Error log:
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 8 MUSA devices:
  Device 0: MTT S4000, compute capability 2.2, VMM: yes
  Device 1: MTT S4000, compute capability 2.2, VMM: yes
  Device 2: MTT S4000, compute capability 2.2, VMM: yes
  Device 3: MTT S4000, compute capability 2.2, VMM: yes
  Device 4: MTT S3000, compute capability 2.1, VMM: yes
  Device 5: MTT S3000, compute capability 2.1, VMM: yes
  Device 6: MTT S3000, compute capability 2.1, VMM: yes
  Device 7: MTT S3000, compute capability 2.1, VMM: yes
build: 4749 (ee02ad02) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
system info: n_threads = 32, n_threads_batch = 32, total_threads = 64

system_info: n_threads = 32 (n_threads_batch = 32) / 64 | MUSA : F16 = 1 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | FA_ALL_QUANTS = 1 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 | 

main: HTTP server is listening, hostname: 0.0.0.0, port: 10086, http threads: 63
main: loading model
srv    load_model: loading model '/root/DeepSeek-R1-Distill-Qwen-32B-GGUF/DeepSeek-R1-Distill-Qwen-32B-Q4_K_M.gguf'
llama_model_load_from_file_impl: using device MUSA0 (MTT S4000) - 49055 MiB free
llama_model_load_from_file_impl: using device MUSA1 (MTT S4000) - 49055 MiB free
llama_model_load_from_file_impl: using device MUSA2 (MTT S4000) - 49055 MiB free
llama_model_load_from_file_impl: using device MUSA3 (MTT S4000) - 49055 MiB free
llama_model_load_from_file_impl: using device MUSA4 (MTT S3000) - 32674 MiB free
llama_model_load_from_file_impl: using device MUSA5 (MTT S3000) - 32674 MiB free
llama_model_load_from_file_impl: using device MUSA6 (MTT S3000) - 32674 MiB free
llama_model_load_from_file_impl: using device MUSA7 (MTT S3000) - 32674 MiB free
llama_model_loader: loaded meta data with 27 key-value pairs and 771 tensors from /root/DeepSeek-R1-Distill-Qwen-32B-GGUF/DeepSeek-R1-Distill-Qwen-32B-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen2
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = DeepSeek R1 Distill Qwen 32B
llama_model_loader: - kv   3:                       general.organization str              = Deepseek Ai
llama_model_loader: - kv   4:                           general.basename str              = DeepSeek-R1-Distill-Qwen
llama_model_loader: - kv   5:                         general.size_label str              = 32B
llama_model_loader: - kv   6:                          qwen2.block_count u32              = 64
llama_model_loader: - kv   7:                       qwen2.context_length u32              = 131072
llama_model_loader: - kv   8:                     qwen2.embedding_length u32              = 5120
llama_model_loader: - kv   9:                  qwen2.feed_forward_length u32              = 27648
llama_model_loader: - kv  10:                 qwen2.attention.head_count u32              = 40
llama_model_loader: - kv  11:              qwen2.attention.head_count_kv u32              = 8
llama_model_loader: - kv  12:                       qwen2.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  13:     qwen2.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  14:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  15:                         tokenizer.ggml.pre str              = deepseek-r1-qwen
llama_model_loader: - kv  16:                      tokenizer.ggml.tokens arr[str,152064]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  17:                  tokenizer.ggml.token_type arr[i32,152064]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  18:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  19:                tokenizer.ggml.bos_token_id u32              = 151646
llama_model_loader: - kv  20:                tokenizer.ggml.eos_token_id u32              = 151643
llama_model_loader: - kv  21:            tokenizer.ggml.padding_token_id u32              = 151654
llama_model_loader: - kv  22:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  23:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  24:                    tokenizer.chat_template str              = {% if not add_generation_prompt is de...
llama_model_loader: - kv  25:               general.quantization_version u32              = 2
llama_model_loader: - kv  26:                          general.file_type u32              = 15
llama_model_loader: - type  f32:  321 tensors
llama_model_loader: - type q4_K:  385 tensors
llama_model_loader: - type q6_K:   65 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q4_K - Medium
print_info: file size   = 18.48 GiB (4.85 BPW) 
init_tokenizer: initializing tokenizer for type 2
load: control token: 151660 '<|fim_middle|>' is not marked as EOG
load: control token: 151659 '<|fim_prefix|>' is not marked as EOG
load: control token: 151653 '<|vision_end|>' is not marked as EOG
load: control token: 151645 '<|Assistant|>' is not marked as EOG
load: control token: 151644 '<|User|>' is not marked as EOG
load: control token: 151655 '<|image_pad|>' is not marked as EOG
load: control token: 151651 '<|quad_end|>' is not marked as EOG
load: control token: 151646 '<|begin▁of▁sentence|>' is not marked as EOG
load: control token: 151643 '<|end▁of▁sentence|>' is not marked as EOG
load: control token: 151652 '<|vision_start|>' is not marked as EOG
load: control token: 151647 '<|EOT|>' is not marked as EOG
load: control token: 151654 '<|vision_pad|>' is not marked as EOG
load: control token: 151656 '<|video_pad|>' is not marked as EOG
load: control token: 151661 '<|fim_suffix|>' is not marked as EOG
load: control token: 151650 '<|quad_start|>' is not marked as EOG
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 22
load: token to piece cache size = 0.9310 MB
print_info: arch             = qwen2
print_info: vocab_only       = 0
print_info: n_ctx_train      = 131072
print_info: n_embd           = 5120
print_info: n_layer          = 64
print_info: n_head           = 40
print_info: n_head_kv        = 8
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 5
print_info: n_embd_k_gqa     = 1024
print_info: n_embd_v_gqa     = 1024
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-05
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: n_ff             = 27648
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 2
print_info: rope scaling     = linear
print_info: freq_base_train  = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 131072
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 32B
print_info: model params     = 32.76 B
print_info: general.name     = DeepSeek R1 Distill Qwen 32B
print_info: vocab type       = BPE
print_info: n_vocab          = 152064
print_info: n_merges         = 151387
print_info: BOS token        = 151646 '<|begin▁of▁sentence|>'
print_info: EOS token        = 151643 '<|end▁of▁sentence|>'
print_info: EOT token        = 151643 '<|end▁of▁sentence|>'
print_info: PAD token        = 151654 '<|vision_pad|>'
print_info: LF token         = 198 'Ċ'
print_info: FIM PRE token    = 151659 '<|fim_prefix|>'
print_info: FIM SUF token    = 151661 '<|fim_suffix|>'
print_info: FIM MID token    = 151660 '<|fim_middle|>'
print_info: FIM PAD token    = 151662 '<|fim_pad|>'
print_info: FIM REP token    = 151663 '<|repo_name|>'
print_info: FIM SEP token    = 151664 '<|file_sep|>'
print_info: EOG token        = 151643 '<|end▁of▁sentence|>'
print_info: EOG token        = 151662 '<|fim_pad|>'
print_info: EOG token        = 151663 '<|repo_name|>'
print_info: EOG token        = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: layer   0 assigned to device MUSA0
load_tensors: layer   1 assigned to device MUSA0
load_tensors: layer   2 assigned to device MUSA0
load_tensors: layer   3 assigned to device MUSA0
load_tensors: layer   4 assigned to device MUSA0
load_tensors: layer   5 assigned to device MUSA0
load_tensors: layer   6 assigned to device MUSA0
load_tensors: layer   7 assigned to device MUSA0
load_tensors: layer   8 assigned to device MUSA0
load_tensors: layer   9 assigned to device MUSA0
load_tensors: layer  10 assigned to device MUSA1
load_tensors: layer  11 assigned to device MUSA1
load_tensors: layer  12 assigned to device MUSA1
load_tensors: layer  13 assigned to device MUSA1
load_tensors: layer  14 assigned to device MUSA1
load_tensors: layer  15 assigned to device MUSA1
load_tensors: layer  16 assigned to device MUSA1
load_tensors: layer  17 assigned to device MUSA1
load_tensors: layer  18 assigned to device MUSA1
load_tensors: layer  19 assigned to device MUSA1
load_tensors: layer  20 assigned to device MUSA2
load_tensors: layer  21 assigned to device MUSA2
load_tensors: layer  22 assigned to device MUSA2
load_tensors: layer  23 assigned to device MUSA2
load_tensors: layer  24 assigned to device MUSA2
load_tensors: layer  25 assigned to device MUSA2
load_tensors: layer  26 assigned to device MUSA2
load_tensors: layer  27 assigned to device MUSA2
load_tensors: layer  28 assigned to device MUSA2
load_tensors: layer  29 assigned to device MUSA2
load_tensors: layer  30 assigned to device MUSA3
load_tensors: layer  31 assigned to device MUSA3
load_tensors: layer  32 assigned to device MUSA3
load_tensors: layer  33 assigned to device MUSA3
load_tensors: layer  34 assigned to device MUSA3
load_tensors: layer  35 assigned to device MUSA3
load_tensors: layer  36 assigned to device MUSA3
load_tensors: layer  37 assigned to device MUSA3
load_tensors: layer  38 assigned to device MUSA3
load_tensors: layer  39 assigned to device MUSA3
load_tensors: layer  40 assigned to device MUSA4
load_tensors: layer  41 assigned to device MUSA4
load_tensors: layer  42 assigned to device MUSA4
load_tensors: layer  43 assigned to device MUSA4
load_tensors: layer  44 assigned to device MUSA4
load_tensors: layer  45 assigned to device MUSA4
load_tensors: layer  46 assigned to device MUSA5
load_tensors: layer  47 assigned to device MUSA5
load_tensors: layer  48 assigned to device MUSA5
load_tensors: layer  49 assigned to device MUSA5
load_tensors: layer  50 assigned to device MUSA5
load_tensors: layer  51 assigned to device MUSA5
load_tensors: layer  52 assigned to device MUSA5
load_tensors: layer  53 assigned to device MUSA6
load_tensors: layer  54 assigned to device MUSA6
load_tensors: layer  55 assigned to device MUSA6
load_tensors: layer  56 assigned to device MUSA6
load_tensors: layer  57 assigned to device MUSA6
load_tensors: layer  58 assigned to device MUSA6
load_tensors: layer  59 assigned to device MUSA7
load_tensors: layer  60 assigned to device MUSA7
load_tensors: layer  61 assigned to device MUSA7
load_tensors: layer  62 assigned to device MUSA7
load_tensors: layer  63 assigned to device MUSA7
load_tensors: layer  64 assigned to device MUSA7
load_tensors: tensor 'token_embd.weight' (q4_K) (and 0 others) cannot be used with preferred buffer type CPU_AARCH64, using CPU instead
load_tensors: offloading 64 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 65/65 layers to GPU
load_tensors:        MUSA0 model buffer size =  2905.04 MiB
load_tensors:        MUSA1 model buffer size =  2760.66 MiB
load_tensors:        MUSA2 model buffer size =  2724.57 MiB
load_tensors:        MUSA3 model buffer size =  2724.57 MiB
load_tensors:        MUSA4 model buffer size =  1641.96 MiB
load_tensors:        MUSA5 model buffer size =  1939.68 MiB
load_tensors:        MUSA6 model buffer size =  1714.15 MiB
load_tensors:        MUSA7 model buffer size =  2097.71 MiB
load_tensors:   CPU_Mapped model buffer size =   417.66 MiB
................................................................................................
llama_init_from_model: n_seq_max     = 4
llama_init_from_model: n_ctx         = 8192
llama_init_from_model: n_ctx_per_seq = 2048
llama_init_from_model: n_batch       = 2048
llama_init_from_model: n_ubatch      = 512
llama_init_from_model: flash_attn    = 1
llama_init_from_model: freq_base     = 1000000.0
llama_init_from_model: freq_scale    = 1
llama_init_from_model: n_ctx_per_seq (2048) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 8192, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 64, can_shift = 1
llama_kv_cache_init: layer 0: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 1: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 2: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 3: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 4: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 5: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 6: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 7: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 8: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 9: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 10: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 11: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 12: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 13: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 14: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 15: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 16: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 17: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 18: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 19: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 20: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 21: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 22: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 23: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 24: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 25: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 26: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 27: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 28: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 29: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 30: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 31: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 32: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 33: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 34: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 35: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 36: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 37: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 38: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 39: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 40: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 41: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 42: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 43: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 44: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 45: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 46: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 47: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 48: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 49: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 50: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 51: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 52: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 53: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 54: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 55: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 56: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 57: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 58: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 59: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 60: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 61: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 62: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 63: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init:      MUSA0 KV buffer size =   320.00 MiB
llama_kv_cache_init:      MUSA1 KV buffer size =   320.00 MiB
llama_kv_cache_init:      MUSA2 KV buffer size =   320.00 MiB
llama_kv_cache_init:      MUSA3 KV buffer size =   320.00 MiB
llama_kv_cache_init:      MUSA4 KV buffer size =   192.00 MiB
llama_kv_cache_init:      MUSA5 KV buffer size =   224.00 MiB
llama_kv_cache_init:      MUSA6 KV buffer size =   192.00 MiB
llama_kv_cache_init:      MUSA7 KV buffer size =   160.00 MiB
llama_init_from_model: KV self size  = 2048.00 MiB, K (f16): 1024.00 MiB, V (f16): 1024.00 MiB
llama_init_from_model:  MUSA_Host  output buffer size =     2.32 MiB
llama_init_from_model: pipeline parallelism enabled (n_copies=4)
llama_init_from_model:      MUSA0 compute buffer size =   632.01 MiB
llama_init_from_model:      MUSA1 compute buffer size =   568.01 MiB
llama_init_from_model:      MUSA2 compute buffer size =   568.01 MiB
llama_init_from_model:      MUSA3 compute buffer size =   568.01 MiB
llama_init_from_model:      MUSA4 compute buffer size =   408.01 MiB
llama_init_from_model:      MUSA5 compute buffer size =   448.01 MiB
llama_init_from_model:      MUSA6 compute buffer size =   408.01 MiB
llama_init_from_model:      MUSA7 compute buffer size =   547.02 MiB
llama_init_from_model:  MUSA_Host compute buffer size = 10858.02 MiB
llama_init_from_model: graph nodes  = 1991
llama_init_from_model: graph splits = 137
common_init_from_params: setting dry_penalty_last_n to ctx_size = 8192
srv          init: initializing slots, n_slots = 4
slot         init: id  0 | task -1 | new slot n_ctx_slot = 2048
slot        reset: id  0 | task -1 | 
slot         init: id  1 | task -1 | new slot n_ctx_slot = 2048
slot        reset: id  1 | task -1 | 
slot         init: id  2 | task -1 | new slot n_ctx_slot = 2048
slot        reset: id  2 | task -1 | 
slot         init: id  3 | task -1 | new slot n_ctx_slot = 2048
slot        reset: id  3 | task -1 | 
main: model loaded
main: chat template, chat_template: {% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '' + '\n' + tool['function']['arguments'] + '\n' + '' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '' + '\n' + tool['function']['arguments'] + '\n' + '' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}, example_format: 'You are a helpful assistant

<|User|>Hello<|Assistant|>Hi there<|end▁of▁sentence|><|User|>How are you?<|Assistant|>'
main: server is listening on http://0.0.0.0:10086 - starting the main loop
que    start_loop: processing new tasks
que    start_loop: update slots
srv  update_slots: all slots are idle
srv  kv_cache_cle: clearing KV cache
que    start_loop: waiting for new tasks
request: {"messages":[{"role":"system","content":"\nCurrent model: gpt-4o\nCurrent date: 2025-02-26T02:45:26.215Z\n\nYou are a helpful assistant."},{"role":"user","content":"你好啊"},{"role":"user","content":"你好"}],"model":"gpt-4o","temperature":0.7,"top_p":0.9,"stream":true}
srv  params_from_: Grammar: 
srv  params_from_: Grammar lazy: false
srv  params_from_: Chat format: Content-only
srv  add_waiting_: add task 0 to waiting list. current waiting = 0 (before add)
que          post: new task, id = 0/1, front = 0
que    start_loop: processing new tasks
que    start_loop: processing task, id = 0
slot get_availabl: id  0 | task -1 | selected slot by lru, t_last = -1
slot        reset: id  0 | task -1 | 
slot launch_slot_: id  0 | task 0 | launching slot : {"id":0,"id_task":0,"n_ctx":2048,"speculative":false,"is_processing":false,"non_causal":false,"params":{"n_predict":-1,"seed":4294967295,"temperature":0.699999988079071,"dynatemp_range":0.0,"dynatemp_exponent":1.0,"top_k":40,"top_p":0.8999999761581421,"min_p":0.05000000074505806,"xtc_probability":0.0,"xtc_threshold":0.10000000149011612,"typical_p":1.0,"repeat_last_n":64,"repeat_penalty":1.0,"presence_penalty":0.0,"frequency_penalty":0.0,"dry_multiplier":0.0,"dry_base":1.75,"dry_allowed_length":2,"dry_penalty_last_n":8192,"dry_sequence_breakers":["\n",":","\"","*"],"mirostat":0,"mirostat_tau":5.0,"mirostat_eta":0.10000000149011612,"stop":[],"max_tokens":-1,"n_keep":0,"n_discard":0,"ignore_eos":false,"stream":true,"logit_bias":[],"n_probs":0,"min_keep":0,"grammar":"","grammar_trigger_words":[],"grammar_trigger_tokens":[],"preserved_tokens":[],"chat_format":"Content-only","samplers":["penalties","dry","top_k","typ_p","top_p","min_p","xtc","temperature"],"speculative.n_max":16,"speculative.n_min":0,"speculative.p_min":0.75,"timings_per_token":false,"post_sampling_probs":false,"lora":[]},"prompt":"<|begin▁of▁sentence|>\nCurrent model: gpt-4o\nCurrent date: 2025-02-26T02:45:26.215Z\n\nYou are a helpful assistant.\n\n<|User|>你好啊<|User|>你好<|Assistant|>","next_token":{"has_next_token":true,"has_new_line":false,"n_remain":-1,"n_decoded":0,"stopping_word":""}}
slot launch_slot_: id  0 | task 0 | processing task
que    start_loop: update slots
srv  update_slots: posting NEXT_RESPONSE
que          post: new task, id = 1, front = 0
slot update_slots: id  0 | task 0 | new prompt, n_ctx_slot = 2048, n_keep = 0, n_prompt_tokens = 52
slot update_slots: id  0 | task 0 | prompt token   0: 151646 '<|begin▁of▁sentence|>'
slot update_slots: id  0 | task 0 | prompt token   1:    198 '
'
slot update_slots: id  0 | task 0 | prompt token   2:   5405 'Current'
slot update_slots: id  0 | task 0 | prompt token   3:   1614 ' model'
slot update_slots: id  0 | task 0 | prompt token   4:     25 ':'
slot update_slots: id  0 | task 0 | prompt token   5:    342 ' g'
slot update_slots: id  0 | task 0 | prompt token   6:    417 'pt'
slot update_slots: id  0 | task 0 | prompt token   7:     12 '-'
slot update_slots: id  0 | task 0 | prompt token   8:     19 '4'
slot update_slots: id  0 | task 0 | prompt token   9:     78 'o'
slot update_slots: id  0 | task 0 | prompt token  10:    198 '
'
slot update_slots: id  0 | task 0 | prompt token  11:   5405 'Current'
slot update_slots: id  0 | task 0 | prompt token  12:   2400 ' date'
slot update_slots: id  0 | task 0 | prompt token  13:     25 ':'
slot update_slots: id  0 | task 0 | prompt token  14:    220 ' '
slot update_slots: id  0 | task 0 | prompt token  15:     17 '2'
slot update_slots: id  0 | task 0 | kv cache rm [0, end)
slot update_slots: id  0 | task 0 | prompt processing progress, n_past = 52, n_tokens = 52, progress = 1.000000
slot update_slots: id  0 | task 0 | prompt done, n_past = 52, n_tokens = 52
srv  update_slots: decoding batch, n_tokens = 52
/root/musa/llama.cpp/ggml/src/ggml-cuda/ggml-cuda.cu:73: MUSA error
MUSA error: operation not supported
  current device: 0, in function alloc at /root/musa/llama.cpp/ggml/src/ggml-cuda/ggml-cuda.cu:443
  muMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0)
request: {"messages":[{"role":"user","content":"Based on the chat history, give this conversation a name.\nKeep it short - 10 characters max, no quotes.\nUse 简体中文.\nJust provide the name, nothing else.\n\nHere's the conversation:\n\n\n你好啊\n\n---------\n\n\n\n---------\n\n你好\n\n---------\n\n...\n\n\nName this conversation in 10 characters or less.\nUse 简体中文.\nOnly give the name, nothing else.\n\nThe name is:"}],"model":"gpt-4o","temperature":0.7,"top_p":0.9,"stream":true}
srv  params_from_: Grammar: 
srv  params_from_: Grammar lazy: false
srv  params_from_: Chat format: Content-only
srv  add_waiting_: add task 2 to waiting list. current waiting = 1 (before add)
que          post: new task, id = 2/1, front = 0

yeungtuzi avatar Feb 26 '25 02:02 yeungtuzi

hi,there is something I want to know to solve your problem,

  1. please execute sudo clinfo|grep Driver on host , show the driver version;
  2. you test this in docker container?

caizhi-mt avatar Feb 26 '25 03:02 caizhi-mt

Image

你的机器上同时插上了s3000和s4000的卡吗?

caizhi-mt avatar Feb 26 '25 05:02 caizhi-mt

@yeungtuzi Please ensure that the latest driver is installed on your host. Current version: rc3.1.1 (https://developer.mthreads.com/sdk/download/musa) Feel free to add me on WeChat: yeahdongcn.

yeahdongcn avatar Feb 26 '25 12:02 yeahdongcn

This issue was closed because it has been inactive for 14 days since being marked as stale.

github-actions[bot] avatar Apr 12 '25 01:04 github-actions[bot]