llama.cpp
llama.cpp copied to clipboard
Eval bug: GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0) failed
Name and Version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no ggml_cuda_init: found 3 CUDA devices: Device 0: Tesla P40, compute capability 6.1, VMM: yes Device 1: Tesla P40, compute capability 6.1, VMM: yes Device 2: Tesla P40, compute capability 6.1, VMM: yes version: 4753 (51f311e0) built with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
Operating systems
Linux
GGML backends
CUDA
Hardware
3x Telsa P40
Models
LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct
Problem description & steps to reproduce
Hello all, I am currently facing an issue with loading EXAONE-3.5-2.4B-Instruct on llama.cpp, log output is below, I similarly had issues when using split mode row with smaller models such as Llama3.2-3B, mostly likely due to the small tensor sizes. Any help is appreciated!
First Bad Commit
No response
Relevant log output
/home/ultimis/LLM/llama.cpp/build/bin/llama-server -m /home/ultimis/LLM/Models/EXAONE-3.5-2.4B-Instruct-Q8_0.gguf -c 32768 -ngl 99 --split-mode none --flash-attn --host 0.0.0.0 --port 8103 -ctv q8_0 -ctk q8_0
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 3 CUDA devices:
Device 0: Tesla P40, compute capability 6.1, VMM: yes
Device 1: Tesla P40, compute capability 6.1, VMM: yes
Device 2: Tesla P40, compute capability 6.1, VMM: yes
build: 4753 (51f311e0) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
system info: n_threads = 16, n_threads_batch = 16, total_threads = 32
system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 520 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | AVX512 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
main: HTTP server is listening, hostname: 0.0.0.0, port: 8103, http threads: 31
main: loading model
srv load_model: loading model '/home/ultimis/LLM/Models/EXAONE-3.5-2.4B-Instruct-Q8_0.gguf'
llama_model_load_from_file_impl: using device CUDA0 (Tesla P40) - 24007 MiB free
llama_model_loader: loaded meta data with 36 key-value pairs and 274 tensors from /home/ultimis/LLM/Models/EXAONE-3.5-2.4B-Instruct-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = exaone
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = EXAONE 3.5 2.4B Instruct
llama_model_loader: - kv 3: general.finetune str = Instruct
llama_model_loader: - kv 4: general.basename str = EXAONE-3.5
llama_model_loader: - kv 5: general.size_label str = 2.4B
llama_model_loader: - kv 6: general.license str = other
llama_model_loader: - kv 7: general.license.name str = exaone
llama_model_loader: - kv 8: general.license.link str = LICENSE
llama_model_loader: - kv 9: general.tags arr[str,4] = ["lg-ai", "exaone", "exaone-3.5", "te...
llama_model_loader: - kv 10: general.languages arr[str,2] = ["en", "ko"]
llama_model_loader: - kv 11: exaone.embedding_length u32 = 2560
llama_model_loader: - kv 12: exaone.attention.head_count u32 = 32
llama_model_loader: - kv 13: exaone.attention.head_count_kv u32 = 8
llama_model_loader: - kv 14: exaone.context_length u32 = 32768
llama_model_loader: - kv 15: exaone.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 16: exaone.feed_forward_length u32 = 7168
llama_model_loader: - kv 17: exaone.block_count u32 = 30
llama_model_loader: - kv 18: general.file_type u32 = 7
llama_model_loader: - kv 19: exaone.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 20: exaone.rope.dimension_count u32 = 80
llama_model_loader: - kv 21: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 22: tokenizer.ggml.pre str = exaone
llama_model_loader: - kv 23: tokenizer.ggml.tokens arr[str,102400] = ["[PAD]", "[BOS]", "[EOS]", "[UNK]", ...
llama_model_loader: - kv 24: tokenizer.ggml.token_type arr[i32,102400] = [3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, ...
llama_model_loader: - kv 25: tokenizer.ggml.merges arr[str,101782] = ["t h", "Ġ a", "Ġ í", "i n", "Ġ t...
llama_model_loader: - kv 26: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 27: tokenizer.ggml.eos_token_id u32 = 361
llama_model_loader: - kv 28: tokenizer.ggml.unknown_token_id u32 = 3
llama_model_loader: - kv 29: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 30: tokenizer.chat_template str = {% for message in messages %}{% if lo...
llama_model_loader: - kv 31: general.quantization_version u32 = 2
llama_model_loader: - kv 32: quantize.imatrix.file str = /models_out/EXAONE-3.5-2.4B-Instruct-...
llama_model_loader: - kv 33: quantize.imatrix.dataset str = /training_dir/calibration_datav3.txt
llama_model_loader: - kv 34: quantize.imatrix.entries_count i32 = 210
llama_model_loader: - kv 35: quantize.imatrix.chunks_count i32 = 137
llama_model_loader: - type f32: 62 tensors
llama_model_loader: - type q8_0: 212 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q8_0
print_info: file size = 2.64 GiB (8.50 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 362
load: token to piece cache size = 0.6622 MB
print_info: arch = exaone
print_info: vocab_only = 0
print_info: n_ctx_train = 32768
print_info: n_embd = 2560
print_info: n_layer = 30
print_info: n_head = 32
print_info: n_head_kv = 8
print_info: n_rot = 80
print_info: n_swa = 0
print_info: n_embd_head_k = 80
print_info: n_embd_head_v = 80
print_info: n_gqa = 4
print_info: n_embd_k_gqa = 640
print_info: n_embd_v_gqa = 640
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: n_ff = 7168
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 32768
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = ?B
print_info: model params = 2.67 B
print_info: general.name = EXAONE 3.5 2.4B Instruct
print_info: vocab type = BPE
print_info: n_vocab = 102400
print_info: n_merges = 101782
print_info: BOS token = 1 '[BOS]'
print_info: EOS token = 361 '[|endofturn|]'
print_info: EOT token = 42 '<|endoftext|>'
print_info: UNK token = 3 '[UNK]'
print_info: PAD token = 0 '[PAD]'
print_info: LF token = 560 'Ċ'
print_info: EOG token = 42 '<|endoftext|>'
print_info: EOG token = 361 '[|endofturn|]'
print_info: max token length = 48
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 30 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 31/31 layers to GPU
load_tensors: CUDA0 model buffer size = 2437.71 MiB
load_tensors: CPU_Mapped model buffer size = 265.62 MiB
...................................................................................
/home/ultimis/LLM/llama.cpp/src/llama.cpp:9695: GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0) failed
llama_init_from_model: n_seq_max = 1
llama_init_from_model: n_ctx = 32768
llama_init_from_model: n_ctx_per_seq = 32768
llama_init_from_model: n_batch = 2048
llama_init_from_model: n_ubatch = 512
llama_init_from_model: flash_attn = 1
llama_init_from_model: freq_base = 1000000.0
llama_init_from_model: freq_scale = 1
Could not attach to process. If your uid matches the uid of the target
process, check the setting of /proc/sys/kernel/yama/ptrace_scope, or try
again as the root user. For more details, see /etc/sysctl.d/10-ptrace.conf
ptrace: Operation not permitted.
No stack.
The program is not being run.