Undefined symbol: _ZN2at4_ops10zeros_like4callERKNS_6TensorEN3c108optionalINS5_10ScalarTypeEEENS6_INS5_6LayoutEEENS6_INS5_6DeviceEEENS6_IbEENS6_INS5_12MemoryFormatEEE
❯ python app.py
/home/arcl/.local/lib/python3.10/site-packages/mmengine/optim/optimizer/zero_optimizer.py:11: DeprecationWarning: TorchScript support for functional optimizers is deprecated and will be removed in a future PyTorch release. Consider using the torch.compile optimizer instead.
from torch.distributed.optim import
Initializing BaseSegmenter to cuda
/mnt/ssd_990/teng/BinPicking/segment-anything/segment_anything/build_sam.py:105: FutureWarning: You are using torch.load with weights_only=False (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for weights_only will be flipped to True. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via torch.serialization.add_safe_globals. We recommend you start setting weights_only=True for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
state_dict = torch.load(f)
/mnt/ssd_990/teng/Track-Anything/tracker/model/network.py:145: FutureWarning: You are using torch.load with weights_only=False (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for weights_only will be flipped to True. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via torch.serialization.add_safe_globals. We recommend you start setting weights_only=True for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
model_weights = torch.load(model_path, map_location="cpu")
Hyperparameters read from the model weights: C^k=64, C^v=512, C^h=64
Single object mode: False
Traceback (most recent call last):
File "/mnt/ssd_990/teng/Track-Anything/app.py", line 385, in
I tried installing mmcv via
conda install -c conda-forge mmcv-full
but it did not work
Same error! Did you ever manage to resolve the problem?