voxelwise_tutorials
voxelwise_tutorials copied to clipboard
Voxelwise modeling tutorial from the Gallantlab.
============================ Voxelwise modeling tutorials
|Github| |Python| |License| |Build| |Downloads|
Welcome to the voxelwise modeling tutorial from the
GallantLab <https://gallantlab.org>_.
Paper
If you use these tutorials for your work, consider citing the corresponding paper:
Dupré La Tour, T., Visconti di Oleggio Castello, M., & Gallant, J. L. (2024). The Voxelwise Modeling framework: a tutorial introduction to fitting encoding models to fMRI data. https://doi.org/10.31234/osf.io/t975e
You can find a copy of the paper here <paper/voxelwise_tutorials_paper.pdf>_.
Tutorials
This repository contains tutorials describing how to use the voxelwise modeling
framework. Voxelwise modeling <https://gallantlab.github.io/voxelwise_tutorials/voxelwise_modeling.html>_ is
a framework to perform functional magnetic resonance imaging (fMRI) data
analysis, fitting encoding models at the voxel level.
To explore these tutorials, one can:
- read the rendered examples in the tutorials
website <https://gallantlab.github.io/voxelwise_tutorials/>_ (recommended) - run the Python scripts (
tutorials <tutorials>_ directory) - run the Jupyter notebooks (
tutorials/notebooks <tutorials/notebooks>_ directory) - run the merged notebook in
Colab <https://colab.research.google.com/github/gallantlab/voxelwise_tutorials/blob/main/tutorials/notebooks/shortclips/merged_for_colab.ipynb>_.
The tutorials are best explored in order, starting with the "Shortclips" tutorial.
Helper Python package
To run the tutorials, this repository contains a small Python package
called voxelwise_tutorials, with useful functions to download the
data sets, load the files, process the data, and visualize the results.
Installation
To install the voxelwise_tutorials package, run:
.. code-block:: bash
pip install voxelwise_tutorials
To also download the tutorial scripts and notebooks, clone the repository via:
.. code-block:: bash
git clone https://github.com/gallantlab/voxelwise_tutorials.git cd voxelwise_tutorials pip install .
Developers can also install the package in editable mode via:
.. code-block:: bash
pip install --editable .
Requirements
The package voxelwise_tutorials has the following dependencies:
numpy <https://github.com/numpy/numpy>,
scipy <https://github.com/scipy/scipy>,
h5py <https://github.com/h5py/h5py>,
scikit-learn <https://github.com/scikit-learn/scikit-learn>,
matplotlib <https://github.com/matplotlib/matplotlib>,
networkx <https://github.com/networkx/networkx>,
nltk <https://github.com/nltk/nltk>,
pycortex <https://github.com/gallantlab/pycortex>,
himalaya <https://github.com/gallantlab/himalaya>,
pymoten <https://github.com/gallantlab/pymoten>,
datalad <https://github.com/datalad/datalad>_.
.. |Github| image:: https://img.shields.io/badge/github-voxelwise_tutorials-blue :target: https://github.com/gallantlab/voxelwise_tutorials
.. |Python| image:: https://img.shields.io/badge/python-3.7%2B-blue :target: https://www.python.org/downloads/release/python-370
.. |License| image:: https://img.shields.io/badge/License-BSD%203--Clause-blue.svg :target: https://opensource.org/licenses/BSD-3-Clause
.. |Build| image:: https://github.com/gallantlab/voxelwise_tutorials/actions/workflows/run_tests.yml/badge.svg :target: https://github.com/gallantlab/voxelwise_tutorials/actions/workflows/run_tests.yml
.. |Downloads| image:: https://pepy.tech/badge/voxelwise_tutorials :target: https://pepy.tech/project/voxelwise_tutorials
Cite as
If you use one of our packages in your work (voxelwise_tutorials [1],
himalaya [2], pycortex [3], or pymoten [4]), please cite the
corresponding publications:
.. [1] Dupré La Tour, T., Visconti di Oleggio Castello, M., & Gallant, J. L. (2024). The Voxelwise Modeling framework: a tutorial introduction to fitting encoding models to fMRI data. https://doi.org/10.31234/osf.io/t975e
.. [2] Dupré La Tour, T., Eickenberg, M., Nunez-Elizalde, A.O., & Gallant, J. L. (2022). Feature-space selection with banded ridge regression. NeuroImage. https://doi.org/10.1016/j.neuroimage.2022.119728
.. [3] Gao, J. S., Huth, A. G., Lescroart, M. D., & Gallant, J. L. (2015). Pycortex: an interactive surface visualizer for fMRI. Frontiers in neuroinformatics, 23. https://doi.org/10.3389/fninf.2015.00023
.. [4] Nunez-Elizalde, A.O., Deniz, F., Dupré la Tour, T., Visconti di Oleggio Castello, M., and Gallant, J.L. (2021). pymoten: scientific python package for computing motion energy features from video. Zenodo. https://doi.org/10.5281/zenodo.6349625